Propagating staggered waves in cellular automata fluids

The majority of lattice gases have, apart from the physical conserved quantities of particle number, momentum and energy, spurious ones, usually staggered in space and time. At the level of linear excitations these staggered modes may be purely diffusive or damped propagating waves. In the eight- and nine-bit model on the square lattice one finds a large number of new spurious modes and the authors derive Green-Kubo relations for the diffusivities and damping constants and calculate them in the Boltzmann approximation.

[1]  M. Ernst,et al.  Nonanalytic dispersion relations for classical fluids , 1975 .

[2]  T. R. Kirkpatrick,et al.  Staggered diffusivities in lattice gas cellular automata , 1991 .

[3]  D. Lévesque,et al.  Liquides, cristallisation et transition vitreuse = Liquids, freezing and glass transition : Les Houches, session LI, 3-28 juillet 1989 , 1991 .

[4]  U. Frisch,et al.  Lattice gas models for 3D hydrodynamics , 1986 .

[5]  Ernst,et al.  Long-time tails in two-dimensional cellular automata fluids. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[6]  Y. Pomeau,et al.  Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions , 1976 .

[7]  Bastien Chopard,et al.  Cellular automata model for heat conduction in a fluid , 1988 .

[8]  P. Binder,et al.  Lattice gas automata with time-dependent collision rules , 1990 .

[9]  Y. Pomeau,et al.  Time evolution of a two‐dimensional model system. I. Invariant states and time correlation functions , 1973 .

[10]  McNamara,et al.  From automata to fluid flow: Comparisons of simulation and theory. , 1989, Physical review. A, General physics.

[11]  M. Ernst,et al.  Long-time tails in lattice Lorentz gases , 1989 .

[12]  Pierre Lallemand,et al.  Lattice Gas Hydrodynamics in Two and Three Dimensions , 1987, Complex Syst..

[13]  S. Wolfram Cellular automaton fluids 1: Basic theory , 1986 .

[14]  Zanetti,et al.  Hydrodynamics of lattice-gas automata. , 1989, Physical review. A, General physics.

[15]  Shiyi Chen,et al.  A lattice gas model with temperature , 1989 .

[16]  M. Ernst,et al.  Hydrodynamics and time correlation functions for cellular automata , 1990 .

[17]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.