Non-Abelian chiral spin liquid in a quantum antiferromagnet revealed by an iPEPS study

Abelian and non-Abelian topological phases exhibiting protected chiral edge modes are ubiquitous in the realm of the fractional quantum Hall (FQH) effect. Here, we investigate a spin-1 Hamiltonian on the square lattice which could, potentially, host the spin liquid analog of the (bosonic) non-Abelian Moore-Read FQH state, as suggested by exact diagonalization of small clusters. Using families of fully SU(2)-spin symmetric and translationally invariant chiral projected entangled pair states (PEPS), variational energy optimization is performed using infinite-PEPS methods, providing good agreement with density matrix renormalization group (DMRG) results. A careful analysis of the bulk spin-spin and dimer-dimer correlation functions in the optimized spin liquid suggests that they exhibit long-range ``gossamer tails''. From the investigation of the entanglement spectrum, we observe sharply defined chiral edge modes following the prediction of the SU(2)${}_{2}$ Wess-Zumino-Witten theory and exhibiting a conformal field theory (CFT) central charge $c=3/2$, as expected for a Moore-Read chiral spin liquid. Using the PEPS bulk-edge correspondence, we argue the ``weak'' criticality of the bulk is in fact a finite-$D$ artifact of the chiral PEPS, which quickly becomes (practically) irrelevant as the PEPS bond dimension $D$ is increased. We conclude that the PEPS formalism offers an unbiased and efficient method to investigate non-Abelian chiral spin liquids in quantum antiferromagnets.

[1]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[2]  R. Laughlin Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations , 1983 .

[3]  Zheng Zhu,et al.  Robust non-Abelian spin liquid and a possible intermediate phase in the antiferromagnetic Kitaev model with magnetic field , 2017, Physical Review B.

[4]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[5]  Xiao-Gang Wen,et al.  Topological Orders in Rigid States , 1990 .

[6]  Zee,et al.  Chiral spin states and superconductivity. , 1989, Physical review. B, Condensed matter.

[7]  Philip W. Anderson,et al.  Resonating valence bonds: A new kind of insulator? , 1973 .

[8]  Román Orús,et al.  Advances on tensor network theory: symmetries, fermions, entanglement, and holography , 2014, 1407.6552.

[9]  R. Orús,et al.  Systematic construction of spin liquids on the square lattice from tensor networks with SU(2) symmetry , 2016, 1608.06003.

[10]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[11]  B. Bauer,et al.  Chiral spin liquid and emergent anyons in a Kagome lattice Mott insulator , 2014, Nature Communications.

[12]  Yasuhiro Hieida,et al.  Two-Dimensional Tensor Product Variational Formulation , 2001 .

[13]  R. Orús,et al.  Infinite projected entangled-pair state algorithm for ruby and triangle-honeycomb lattices , 2017, 1711.04798.

[14]  N. Read,et al.  Tensor network trial states for chiral topological phases in two dimensions , 2013, 1307.7726.

[15]  J. Cirac,et al.  Topological order in the projected entangled-pair states formalism: transfer operator and boundary Hamiltonians. , 2013, Physical review letters.

[16]  N. Schuch,et al.  Interplay of SU(2), point group, and translational symmetry for projected entangled pair states: Application to a chiral spin liquid , 2018, Physical Review B.

[17]  Frank Verstraete,et al.  Diagonalizing transfer matrices and matrix product operators: a medley of exact and computational methods , 2016, 1611.08519.

[18]  J. Cirac,et al.  Entanglement in many-body quantum systems , 2012, 1205.3742.

[19]  R. Laughlin,et al.  Equivalence of the resonating-valence-bond and fractional quantum Hall states. , 1987, Physical review letters.

[20]  F. Verstraete,et al.  Renormalization and tensor product states in spin chains and lattices , 2009, 0910.1130.

[21]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[22]  D. Tsui,et al.  The Quantized Hall Effect , 1983, Science.

[23]  Wen,et al.  Gapless boundary excitations in the quantum Hall states and in the chiral spin states. , 1991, Physical review. B, Condensed matter.

[24]  B. Andrei Bernevig,et al.  Fractional Chern Insulator , 2011, 1105.4867.

[25]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[26]  R. Thomale,et al.  Parent Hamiltonian for the non-Abelian chiral spin liquid , 2012, 1201.5312.

[27]  A. Lauchli,et al.  Chiral spin liquid and quantum criticality in extended S =1/2 Heisenberg models on the triangular lattice , 2016, 1604.07829.

[28]  D. Sheng,et al.  Chiral spin liquid in a frustrated anisotropic kagome Heisenberg model. , 2013, Physical review letters.

[29]  R. Moessner,et al.  Hierarchy of fractional Chern insulators and competing compressible states. , 2012, Physical review letters.

[30]  X. Wen THEORY OF THE EDGE STATES IN FRACTIONAL QUANTUM HALL EFFECTS , 1992 .

[31]  Wen Non-Abelian statistics in the fractional quantum Hall states. , 1991, Physical review letters.

[32]  Xiong-Jun Liu,et al.  Non-Abelian S=1 chiral spin liquid on the kagome lattice , 2015, Physical Review B.

[33]  J. Cirac,et al.  Laughlin spin-liquid states on lattices obtained from conformal field theory. , 2012, Physical review letters.

[34]  M. Mambrini,et al.  Quantum critical point with infinite projected entangled paired states , 2017, 1702.05950.

[35]  J. Cirac,et al.  Edge states for the Kalmeyer-Laughlin wave function , 2015, 1509.02147.

[36]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[37]  Philippe Corboz,et al.  Variational optimization with infinite projected entangled-pair states , 2016, 1605.03006.

[38]  N. Schuch Condensed Matter Applications of Entanglement Theory , 2013, 1306.5551.

[39]  A. Lauchli,et al.  Nature of chiral spin liquids on the kagome lattice , 2015, 1503.03389.

[40]  R. Thomale,et al.  Spin hamiltonian for which the chiral spin liquid is the exact ground state. , 2007, Physical review letters.

[41]  J. Cirac,et al.  Resonating valence bond states in the PEPS formalism , 2012, 1203.4816.

[42]  R. Thomale,et al.  Non-Abelian statistics in a quantum antiferromagnet. , 2009, Physical Review Letters.

[43]  I. Bloch,et al.  Quantum simulations with ultracold atoms in optical lattices , 2017, Science.

[44]  N. Regnault,et al.  Emergent many-body translational symmetries of Abelian and non-Abelian fractionally filled topological insulators , 2011, 1110.4488.

[45]  Frank Verstraete,et al.  Gradient methods for variational optimization of projected entangled-pair states , 2016, 1606.09170.

[46]  Frank Pollmann,et al.  Theory of finite-entanglement scaling at one-dimensional quantum critical points. , 2008, Physical review letters.

[47]  I. Affleck,et al.  SU(2)1 chiral edge modes of a critical spin liquid , 2016, 1602.05969.

[48]  G. Fiete,et al.  Fractionalized topological insulators , 2015, Nature Physics.

[49]  D. Poilblanc Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states , 2017, 1707.07844.

[50]  A. Sandvik,et al.  Properties of Resonating-Valence-Bond Spin Liquids and Critical Dimer Models , 2010, 1010.6146.

[51]  John Fry,et al.  Bubbles, shocks and elementary technical trading strategies , 2014 .

[52]  J. Ignacio Cirac,et al.  Entanglement spectrum and boundary theories with projected entangled-pair states , 2011, 1103.3427.

[53]  J. Cirac,et al.  Fractional quantum Hall states in lattices: Local models and physical implementation , 2013, 1304.0717.

[54]  J. Ignacio Cirac,et al.  Chiral topological spin liquids with projected entangled pair states , 2015, 1504.05236.

[55]  Michael Marien,et al.  Excitations and the tangent space of projected entangled-pair states , 2015, Physical Review B.

[56]  B. Halperin Statistics of quasiparticles and the hierarchy of fractional quantized Hall states , 1984 .

[57]  Hui Li,et al.  Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states. , 2008, Physical review letters.

[58]  J. Cirac,et al.  Exact parent Hamiltonians of bosonic and fermionic Moore–Read states on lattices and local models , 2015, 1505.04998.

[59]  X. Wen Topological Order: From Long-Range Entangled Quantum Matter to a Unified Origin of Light and Electrons , 2012, 1210.1281.

[60]  R. Thomale,et al.  Parent Hamiltonian for the chiral spin liquid , 2009, 0905.3257.

[61]  J. Cirac,et al.  Topological and entanglement properties of resonating valence bond wave functions , 2012, 1202.0947.

[62]  Jason Alicea,et al.  New directions in the pursuit of Majorana fermions in solid state systems , 2012, Reports on progress in physics. Physical Society.

[63]  T. Nishino,et al.  Corner Transfer Matrix Renormalization Group Method , 1995, cond-mat/9507087.

[64]  Kun Yang,et al.  Global phase diagram and quantum spin liquids in a spin- 12 triangular antiferromagnet , 2017, 1705.00510.

[65]  Simeng Yan,et al.  Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet , 2010, Science.