Electrical transport properties of aluminum-implanted 4H–SiC

The free hole density and low-field mobility of aluminum-doped 4H–SiC were investigated in the temperature range of 100–900K, both, experimentally and theoretically. Experimental data for implanted p-type 4H–SiC were compared with theoretical calculations using parameters determined for high-quality epitaxial layers. The deformation potential for intra- and intervalley scattering by acoustic phonons and the effective coupling constant for intra- and intervalley scattering by nonpolar optical phonons were determined. The detailed analysis of the implanted layers with aluminum-targeted concentration ranging from 3.33×1018to1021cm−3 shows that (i) about half of the implanted atoms are electrically active in the SiC lattice, (ii) a systematic compensation of about 10% of the doping level is induced by the implantation process, (iii) two different ionization energies for the aluminum atoms have to be used. Their origin is discussed in terms of inequivalent hexagonal and cubic lattice sites. Finally, the doping...

[1]  J. Farvacque Extension of the collision-time tensor to the case of inelastic scattering mechanisms: Application to GaAs and GaN , 2000 .

[2]  C. Erginsoy Neutral Impurity Scattering in Semiconductors , 1950 .

[3]  T. S. Moss,et al.  Handbook on semiconductors , 1980 .

[4]  H. Callen,et al.  Electric Breakdown in Ionic Crystals , 1949 .

[5]  L. Di Cioccio,et al.  Electrical transport in n-type 4H silicon carbide , 2001 .

[6]  G. Ferro,et al.  Is the Al Solubility Limit in SiC Temperature Dependent or not? , 2005 .

[7]  U. Rößler,et al.  Global band structure and near-band edge states , 1997 .

[8]  A. Agarwal,et al.  Low-dose aluminum and boron implants in 4H and 6H silicon carbide , 2001 .

[9]  J. Bluet,et al.  Activation of aluminum implanted at high doses in 4H–SiC , 2000 .

[10]  B. Johansson,et al.  Metal-nonmetal transition in p-type SiC polytypes - art. no. 205119 , 2001 .

[11]  Wolfgang J. Choyke,et al.  Static Dielectric Constant of SiC , 1970 .

[12]  E. Janzén,et al.  Analysis of the sharp donor-acceptor pair luminescence in 4H-SiC doped with nitrogen and aluminum , 2003 .

[13]  Clas Persson,et al.  Relativistic band structure calculation of cubic and hexagonal SiC polytypes , 1997 .

[14]  W. J. Choyke,et al.  Theoretical Investigations of Complexes of p-Type Dopants and Carbon Interstitial in SiC: Bistable, Negative-U Defects , 2005 .

[15]  D. C. Capell,et al.  High temperature high-dose implantation of aluminum in 4H-SiC , 2004 .

[16]  G. Pensl,et al.  Hall Scattering Factor for Electrons and Holes in SiC , 2004 .

[17]  G. Pensl,et al.  Electrical and Optical Characterization of SiC , 2003 .

[18]  C. E. Stutz,et al.  On Hall Scattering Factors for Holes in GaAs , 1996 .

[19]  C. Jacoboni,et al.  Ohmic hole mobility in cubic semiconductors , 1974 .

[20]  C. Hecht,et al.  Challenges and First Results of SiC Schottky Diode Manufacturing using a 3-Inch Technology , 2004 .

[21]  H. Matsunami Silicon Carbide Technology in New Era , 2002 .

[22]  S. Karmann,et al.  Piezoelectric properties and elastic constants of 4H and 6H SiC at temperatures 4–320 K , 1989 .

[23]  M. O. Vassell,et al.  High-Field Transport inn- Type GaAs , 1968 .

[24]  Calculation of optical- and acoustic-phonon—limited conductivity and Hall mobilities for p -type silicon and germanium , 1983 .

[25]  K. Itoh,et al.  Donor and acceptor concentration dependence of the electron Hall mobility and the Hall scattering factor in n-type 4H– and 6H–SiC , 2001 .

[26]  Takahiro Tanaka,et al.  Site effect on the impurity levels in 4 H , 6 H , and 1 5 R SiC , 1980 .

[27]  B. Ridley Quantum Processes in Semiconductors , 1982 .

[28]  James H. Parker,et al.  Phonon Dispersion Curves by Raman Scattering in SiC, Polytypes 3 C , 4 H , 6 H , 1 5 R , and 2 1 R , 1968 .

[29]  U. Lindefelt,et al.  Density of states in hexagonal SiC polytypes , 1998 .

[30]  Thomas Frank,et al.  Doping of SiC by Implantation of Boron and Aluminum , 1997 .

[31]  A. D. Mesquita Refinement of the crystal structure of SiC type 6H , 1967 .

[32]  W. J. Choyke,et al.  Silicon carbide : recent major advances , 2004 .

[33]  G. Pensl,et al.  Aluminum Incorporation into 4H-SiC Layers during Epitaxial Growth in a Hot-Wall CVD System , 2002 .

[34]  H. Bleichner,et al.  Solubility limit and precipitate formation in Al-doped 4H-SiC epitaxial material , 2001 .

[35]  E. Janzén,et al.  Temperature-Dependent Hall Effect Measurements in Low – Compensated p-Type 4H-SiC , 2004 .

[36]  L. Di Cioccio,et al.  Free electron density and mobility in high-quality 4H-SiC , 2000 .

[37]  M. V. Rao,et al.  Deep-level transient spectroscopy study on double implanted n+–p and p+–n 4H-SiC diodes , 2004 .

[38]  H. Nilsson,et al.  Monte Carlo study of hole mobility in Al-doped 4H–SiC , 2002 .

[39]  D. Look,et al.  Hole Transport in Pure and Doped GaAs , 1983 .