A Tutorial on Non-Parametric Bilinear Time-Frequency Signal Representations
暂无分享,去创建一个
[1] L. Cohen. Generalized Phase-Space Distribution Functions , 1966 .
[2] Patrick Flandrin,et al. An interpretation of the Pseudo-Wigner-Ville distribution , 1984 .
[3] Franz Hlawatsch. Transformation, inversion and conversion of bilinear signal representations , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.
[4] B. Atal,et al. Generalized Short‐Time Power Spectra and Autocorrelation Functions , 1962 .
[5] P. Flandrin,et al. Time and frequency representation of finite energy signals: A physical property as a result of an hilbertian condition , 1980 .
[6] G. Ruggeri. On Phase-Space Description of Quantum Mechanics , 1971 .
[7] Mj Martin Bastiaans. A Sampling Theorem For The Complex Spectrogram, And Gabor's Expansion Of A Signal In Gaussian Elementary Signals , 1981 .
[8] Gloria Faye Boudreaux-Bartels,et al. Time-frequency signal processing algorithms: analysis and synthesis using wigner distributions , 1984 .
[9] Thomas W. Parks,et al. Signal estimation using modified Wigner distributions , 1984, ICASSP.
[10] Fred J. Taylor,et al. On the Wigner distribution , 1983, ICASSP.
[11] Ben R. Breed,et al. A range and azimuth estimator based on forming the spatial Wigner distribution , 1984, ICASSP.
[12] M. Ackroyd. Instantaneous and time-varying spectraߞan introduction , 1970 .
[13] Irving S. Reed,et al. A generalization of the Gabor-Helstrom transform (Corresp.) , 1967, IEEE Trans. Inf. Theory.
[14] A. Royer. Wigner function as the expectation value of a parity operator , 1977 .
[15] Patrick Flandrin,et al. Representations temps-frequence et causalite , 1985 .
[16] Boualem Boashash,et al. Wigner-Ville analysis of time-varying signals , 1982, ICASSP.
[17] S. Kay,et al. On the optimality of the Wigner distribution for detection , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.
[18] D. B. Preston. Spectral Analysis and Time Series , 1983 .
[19] R. F. O'Connell,et al. The Wigner distribution function—50th birthday , 1983 .
[20] M. Berry. Semi-classical mechanics in phase space: A study of Wigner’s function , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[21] Mj Martin Bastiaans. Sampling theorem for the complex spectrogram, and Gabor's expansion in Gaussian elementary signals , 1981 .
[22] R. F. Harrison,et al. Wigner-Ville and evolutionary spectra for covariance equivalent nonstationary random processes , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.
[23] T. Claasen,et al. THE WIGNER DISTRIBUTION - A TOOL FOR TIME-FREQUENCY SIGNAL ANALYSIS , 1980 .
[24] K. Kodera,et al. A new method for the numerical analysis of nonstationary signals , 1976 .
[25] K. Kodera,et al. Analysis of time-varying signals with small BT values , 1978 .
[26] J. G. Krüger,et al. Quantum mechanics in phase space , 1976 .
[27] August W. Rihaczek,et al. Signal energy distribution in time and frequency , 1968, IEEE Trans. Inf. Theory.
[28] Augustus J. E. M. Janssen,et al. Gabor representation and Wigner distribution of signals , 1984, ICASSP.
[29] J. E. Moyal. Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.
[30] C. Page. Instantaneous Power Spectra , 1952 .
[31] Yves Grenier,et al. Time-dependent ARMA modeling of nonstationary signals , 1983 .
[32] M. Ackroyd. Short‐Time Spectra and Time‐Frequency Energy Distributions , 1971 .
[33] R. Altes. Detection, estimation, and classification with spectrograms , 1980 .
[34] M. Bastiaans,et al. The Wigner distribution function and its applications to optics , 1980 .
[35] M. Bastiaans,et al. Gabor's expansion of a signal into Gaussian elementary signals , 1980, Proceedings of the IEEE.
[36] Mj Martin Bastiaans. Transport Equations for the Wigner Distribution Function in an Inhomogeneous and Dispersive Medium , 1979 .
[37] Walter Schempp,et al. Radar Ambiguity Functions, Nilpotent Harmonic Analysis, and Holomorphic Theta Series , 1984 .
[38] Mj Martin Bastiaans. The Wigner distribution function and Hamilton's characteristics of a geometric-optical system , 1979 .
[39] P. Flandrin,et al. Detection of changes of signal structure by using the Wigner-Ville spectrum , 1985 .
[40] W. Martin,et al. Time-frequency analysis of random signals , 1982, ICASSP.
[41] Jae Lim,et al. Signal reconstruction from short-time Fourier transform magnitude , 1983 .
[42] W. Martin. Measuring the degree of non-stationarity by using the Wigner-Ville spectrum , 1984, ICASSP.
[43] R. Fano. Short‐Time Autocorrelation Functions and Power Spectra , 1950 .
[44] O. Grace. Instantaneous power spectra , 1981 .
[45] W. D. Mark. Spectral analysis of the convolution and filtering of non-stationary stochastic processes , 1970 .
[46] Patrick Flandrin,et al. Sur les conditions physiques assurant l'unicite de la representation de wigner-ville comme representation temps-frequence , 1983 .
[47] Harry Wechsler,et al. The composite pseudo Wigner distribution (CPWD): A computable and versatile approximation to the Wigner distribution (WD) , 1983, ICASSP.
[48] T. Claasen,et al. The aliasing problem in discrete-time Wigner distributions , 1983 .
[49] Guy Melard. Propriétés du spectre évolutif d'un processus non stationnaire , 1978 .
[50] Richard Tolimieri,et al. Characterizing the radar ambiguity functions , 1984, IEEE Trans. Inf. Theory.
[51] D. Friedman,et al. Instantaneous-frequency distribution vs. time: An interpretation of the phase structure of speech , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.
[52] A. Lohmann,et al. The wigner distribution function and its optical production , 1980 .
[53] A. Janssen. Positivity of Weighted Wigner Distributions , 1981 .
[54] Thomas W. Parks,et al. Reducing aliasing in the Wigner distribution using implicit spline interpolation , 1983, ICASSP.
[55] Mj Martin Bastiaans. Transport equations for the Wigner distribution function , 1979 .
[56] M. H. Ackroyd,et al. Instantaneous spectra and instantaneous frequency , 1970 .
[57] F. Taylor,et al. The wigner distribution in speech processing applications , 1984 .
[58] Leon Cohen,et al. Distributions in signal theory , 1984, ICASSP.
[59] A. Janssen. Positivity properties of phase-plane distribution functions , 1984 .
[60] Bernard Escudie,et al. Représentation hilbertienne et représentation conjointe en temps et fréquence des signaux d'énergie finie, interprétation physique en fonction des observations , 1977 .
[61] M. Scully,et al. Distribution functions in physics: Fundamentals , 1984 .
[62] Dennis Gabor,et al. Theory of communication , 1946 .
[63] Alwyn van der Merwe,et al. Perspectives in quantum theory , 1971 .
[64] Theo A. C. M. Claasen,et al. On the time-frequency discrimination of energy distributions: Can they look sharper than Heisenberg ? , 1984, ICASSP.
[65] Bernard Escudie,et al. Représentation en temps et fréquence des signaux d’énergie finie: analyse et observation des signaux , 1979 .
[66] de Ng Dick Bruijn,et al. Uncertainty principles in Fourier analysis , 1967 .
[67] Jae S. Lim,et al. Algorithms for signal reconstruction from short-time Fourier transform magnitude , 1983, ICASSP.
[68] Mj Martin Bastiaans. Wigner distribution function and its application to first-order optics , 1979 .
[69] R. Gendrin,et al. Unambiguous determination of fine structures in multicomponent time-varying signals , 1979 .
[70] L. Cohen. Positive and Negative Joint Quantum Distributions , 1986 .
[71] Bernard Escudié,et al. Principe et mise en œuvre de l'analyse temps fréquence par transformation de Wigner-Ville , 1985 .
[72] Jae S. Lim,et al. Signal estimation from modified short-time Fourier transform , 1983, ICASSP.
[73] J.B. Allen,et al. A unified approach to short-time Fourier analysis and synthesis , 1977, Proceedings of the IEEE.
[74] Patrick Flandrin,et al. Some features of time-frequency representations of multicomponent signals , 1984, ICASSP.
[75] N. Marcuvitz. Quasiparticle view of wave propagation , 1980, Proceedings of the IEEE.
[76] Lawrence R. Rabiner,et al. Short-time Fourier analysis tecniques for FIR system identification and power spectrum estimation , 1979 .
[77] M. Bastiaans. Wigner distribution function display: a supplement to ambiguity function display using a single 1-D input. , 1980, Applied optics.
[78] M. Portnoff. Time-frequency representation of digital signals and systems based on short-time Fourier analysis , 1980 .
[79] Harry Wechsler,et al. A paradigm for invariant object recognition of brightness, optical flow and binocular disparity images , 1982, Pattern Recognit. Lett..
[80] Harinath Garudadri,et al. Identification of invariant acoustic cues in stop consonants using the Wigner distribution , 1987 .
[81] L. Cohen,et al. Probabilities in Quantum Mechanics , 1967 .
[82] N. Marinovic,et al. Use of the Wigner Distribution to Analyze the Time-Frequency Response of Ultrasonic Transducers , 1984 .
[83] Leon Cohen. Properties of the positive time-frequency distribution functions , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.
[84] Boualem Boashash,et al. Recognition of time-varying signals in the time-frequency domain by means of the Wigner distribution , 1984, ICASSP.
[85] Kai-Bor Yu,et al. Signal synthesis from Wigner distribution , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.
[86] J. Wilbur,et al. Time and spatial varying CAM and AI signal analysis using the Wigner distribution , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.
[87] Carl W. Helstrom,et al. An expansion of a signal in Gaussian elementary signals (Corresp.) , 1966, IEEE Trans. Inf. Theory.
[88] Cornelis P. Janse,et al. Time-Frequency Distributions of Loudspeakers: The Application of the Wigner Distribution , 1983 .
[89] J. A. Blodgett,et al. Wigner distribution and ambiguity function , 1980 .
[90] Theo A. C. M. Claasen,et al. Time-frequency signal analysis by means of the Wigner distribution , 1981, ICASSP.
[91] H. Szu. Two -dimensional optical processing of one- dimensional acoustic data , 1982 .
[92] Philip M. Woodward,et al. Probability and Information Theory with Applications to Radar , 1954 .
[93] B. V. K. Vijaya Kumar,et al. Performance Of Wigner Distribution Function Based Detection Methods , 1984 .
[94] Mj Martin Bastiaans. The Wigner distribution function applied to optical signals and systems , 1978 .
[95] G. Eichmann,et al. An expansion of Wigner distribution and its applications , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.
[96] Alan V. Oppenheim,et al. Speech spectrograms using the fast Fourier transform , 1970, IEEE Spectrum.
[97] A. J. E. M. Janssen,et al. A Note on Hudson’s Theorem about Functions with Nonnegative Wigner Distributions , 1984 .
[98] Georges Bonnet,et al. Considérations sur la représentation et l’analyse harmonique des signaux déterministes ou aléatoires , 1968 .
[99] H.H. Szu,et al. The mutual time—Frequency content of two signals , 1984, Proceedings of the IEEE.
[100] Yves Grenier,et al. Comparaison des représentations temps-fréquence de signaux présentant des discontinuités spectrales , 1983 .
[101] B E Saleh,et al. Generation of the Wigner distribution function of two-dimensional signals by a parallel optical processor. , 1984, Optics letters.
[102] Leon Cohen,et al. Positive time-frequency distribution functions , 1985, IEEE Trans. Acoust. Speech Signal Process..
[103] Ajem Guido Janssen,et al. On the locus and spread of pseudo-density functions in the time-frequency plane , 1982 .
[104] E. Wigner. On the quantum correction for thermodynamic equilibrium , 1932 .
[105] David S. K. Chan,et al. A non-aliased discrete-time Wigner distribution for time-frequency signal analysis , 1982, ICASSP.
[106] de Ng Dick Bruijn. A theory of generalized functions, with applications to Wigner distribution and Weyl correspondence , 1973 .
[107] Morris J. Levin,et al. Instantaneous spectra and ambiguity functions (Corresp.) , 1964, IEEE Trans. Inf. Theory.
[108] P. Flandrin,et al. A general class of estimators for the wigner-ville spectrum of non-stationary processes , 1984 .
[109] D. Tj⊘stheim. Spectral generating operators for non-stationary processes , 1976, Advances in Applied Probability.