Stereo vision by self-organization

We propose a new algorithm for stereoscopic depth perception, where the depth map is the momentary state of a dynamic process. To each image point we assign a set of possible disparity values. In a dynamic process with competition and cooperation, the correct disparity value is selected for each image point. Therefore, we solve the correspondence problem by a dynamic, self-organizing process, the structure of which shows analogies to the human visual system. The algorithm can be implemented in a massive parallel manner and yields good results for either artificial or natural images.

[1]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[2]  Claus-Dieter Schulz Theorie eines Lasersystems zur Mustererkennung als optische Realisierung eines synergetischen Computers , 1992 .

[3]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  K. Prazdny,et al.  Detection of binocular disparities , 2004, Biological Cybernetics.

[5]  C Bourdy 3D reconstruction and interpretation in human binocular vision by processing of disparity information , 1989 .

[6]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[7]  H. Haken,et al.  Synergetic Computers for Pattern Recognition and Associative Memory , 1987 .

[8]  H. Haken Pattern Formation by Dynamic Systems and Pattern Recognition , 1979, Springer Series in Synergetics.

[9]  Martin A. Fischler,et al.  Computational Stereo , 1982, CSUR.

[10]  B. Julesz,et al.  Extension of Panum's fusional area in binocularly stabilized vision. , 1967, Journal of the Optical Society of America.

[11]  J P Frisby,et al.  PMF: A Stereo Correspondence Algorithm Using a Disparity Gradient Limit , 1985, Perception.

[12]  James J. Little,et al.  Parallel Optical Flow Computation , 1987 .

[13]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[14]  Fine,et al.  Statistical mechanics of stereoscopic vision. , 1989, Physical review. A, General physics.

[15]  Douglas C. Brockelbank,et al.  An experimental investigation in the use of color in computational stereopsis , 1989, IEEE Trans. Syst. Man Cybern..

[16]  Andrew Witkin,et al.  Stereo Matching As Constrained Optimization Using Scale Continuation Methods , 1987, Photonics West - Lasers and Applications in Science and Engineering.

[17]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[18]  Heinrich H. Bülthoff,et al.  Stereo Integration, Mean Field Theory and Psychophysics , 1990, ECCV.

[19]  Parvati Dev,et al.  Perception of Depth Surfaces in Random-Dot Stereograms: A Neural Model , 1975, Int. J. Man Mach. Stud..

[20]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[21]  Tomaso Poggio,et al.  Cooperative computation of stereo disparity , 1988 .

[22]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[23]  Hermann Haken Pattern Formation and Pattern Recognition — An Attempt at a Synthesis , 1979 .

[24]  Hiroshi Shimizu,et al.  Oscillatory binocular system and temporal segmentation of stereoscopic depth surfaces , 1993, Biological Cybernetics.

[25]  Professor Dr. Dr. h.c. Hermann Haken,et al.  Synergetic Computers and Cognition , 1991, Springer Series in Synergetics.

[26]  Tomaso A. Poggio,et al.  On parallel stereo , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[27]  J. Brickmann H. Haken (Ed.): Pattern Formation by Dynamic Systems and Pattern Recognition. Springer Verlag, Berlin, Heidelberg, New York 1979. 305 Seiten, Preis: DM 68,—, US $ 37,40. , 1980 .

[28]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.