The genetics and genomics of insecticide resistance.

[1]  J. Casida,et al.  Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. , 2003, Annual review of entomology.

[2]  D. Heckel Genomics in pure and applied entomology. , 2003, Annual review of entomology.

[3]  Richard T. Roush,et al.  Insect Resistance to Transgenic Bt Crops: Lessons from the Laboratory and Field , 2003, Journal of economic entomology.

[4]  R. ffrench-Constant,et al.  Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila. , 2003, Insect biochemistry and molecular biology.

[5]  D. M. Soderlund,et al.  The molecular biology of knockdown resistance to pyrethroid insecticides. , 2003, Insect biochemistry and molecular biology.

[6]  Georges Lutfalla,et al.  Comparative genomics: Insecticide resistance in mosquito vectors , 2003, Nature.

[7]  S. Morin,et al.  Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Oakeshott,et al.  The genomics of insecticide resistance , 2003, Genome Biology.

[9]  M. Ashburner,et al.  The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective , 2002, Genome Biology.

[10]  Michel Raymond,et al.  A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non–homologous to the ace gene Drosophila , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[11]  Janet Hemingway,et al.  Evolution of Supergene Families Associated with Insecticide Resistance , 2002, Science.

[12]  R. ffrench-Constant,et al.  A Single P450 Allele Associated with Insecticide Resistance in Drosophila , 2002, Science.

[13]  S. Foster,et al.  Amplified esterase genes and their relationship with other insecticide resistance mechanisms in English field populations of the aphid, Myzus persicae (Sulzer). , 2002, Pest management science.

[14]  M. Kreitman,et al.  Differential expression and induction of two Drosophila cytochrome P450 genes near the Rst(2)DDT locus , 2002, Insect molecular biology.

[15]  D. Cully,et al.  Ivermectin and nodulisporic acid receptors in Drosophila melanogaster contain both gamma-aminobutyric acid-gated Rdl and glutamate-gated GluCl alpha chloride channel subunits. , 2002, Biochemistry.

[16]  S. Buckingham,et al.  Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. , 2001, Trends in pharmacological sciences.

[17]  R. ffrench-Constant,et al.  DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid , 2001, Molecular Genetics and Genomics.

[18]  J. Casida,et al.  Structure and diversity of insect nicotinic acetylcholine receptors. , 2001, Pest management science.

[19]  D. Heckel,et al.  Identification of a Gene Associated with Bt Resistance in Heliothis virescens , 2001, Science.

[20]  C. Helvig,et al.  The cytochrome P450 gene superfamily in Drosophila melanogaster: annotation, intron-exon organization and phylogeny. , 2001, Gene.

[21]  D. Schmatz,et al.  Drug-resistant Drosophila indicate glutamate-gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. Casida,et al.  Neonicotinoid insecticides: molecular features conferring selectivity for insect versus mammalian nicotinic receptors. , 2000, Journal of agricultural and food chemistry.

[23]  J. G. Scott,et al.  Expression and activity of a house‐fly cytochrome P450, CYP6D1, in Drosophila melanogaster , 2000, Insect molecular biology.

[24]  D. Cutler,et al.  The Evolution of an α-Esterase Pseudogene Inactivated in the Drosophila melanogaster Lineage , 2000 .

[25]  A. Yoshimoto,et al.  The cadherin‐like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa toxin , 1999, FEBS letters.

[26]  R. ffrench-Constant,et al.  Multiple Origins of Cyclodiene Insecticide Resistance in Tribolium castaneum (Coleoptera: Tenebrionidae) , 1999, Journal of Molecular Evolution.

[27]  R. ffrench-Constant Target site mediated insecticide resistance: what questions remain? , 1999 .

[28]  C. Tyler-Smith,et al.  Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). , 1999, The Biochemical journal.

[29]  J. A. Mckenzie,et al.  Predicting insecticide resistance: mutagenesis, selection and response. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[30]  T. Malvar,et al.  Insect resistance to Bacillus thuringiensis: uniform or diverse? , 1998 .

[31]  T. Lenormand,et al.  An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[32]  M. Ashok,et al.  Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  A. Devonshire,et al.  Evidence that the E4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer) are part of a gene family. , 1998, The Biochemical journal.

[34]  J. Oakeshott,et al.  A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. A. Mckenzie,et al.  Ecological and Evolutionary Aspects of Insecticide Resistance. , 1997 .

[36]  M. Froment,et al.  A single amino acid substitution, Gly117His, confers phosphotriesterase (organophosphorus acid anhydride hydrolase) activity on human butyrylcholinesterase. , 1997, Biochemistry.

[37]  C. Malcolm,et al.  Existence of Two Acetylcholinesterases in the Mosquito Culex pipiens (Diptera: Culicidae) , 1996, Journal of neurochemistry.

[38]  A. Devonshire,et al.  Identification of mutations in the houseflypara-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides , 1996, Molecular and General Genetics MGG.

[39]  Masahiro Miyazaki,et al.  Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) and house fly (Musca domestica) , 1996, Molecular and General Genetics MGG.

[40]  J. Oakeshott,et al.  Isolation of a cluster esterase genes associated with organophosphate resistance in Lucilia cuprina , 1996, Insect molecular biology.

[41]  J. Oakeshott,et al.  Molecular cloning of an α-esterase gene cluster on chromosome 3R of Drosophila melanogaster , 1996 .

[42]  J. Van Rie,et al.  Biochemistry and genetics of insect resistance to Bacillus thuringiensis. , 1995, Annual review of entomology.

[43]  B. H. Knowles,et al.  Molecular Cloning of an Insect Aminopeptidase N That Serves as a Receptor for Bacillus thuringiensis CryIA(c) Toxin (*) , 1995, The Journal of Biological Chemistry.

[44]  R. Vadlamudi,et al.  Cloning and Expression of a Receptor for an Insecticidal Toxin of Bacillus thuringiensis(*) , 1995, The Journal of Biological Chemistry.

[45]  R. ffrench-Constant,et al.  Molecular Analysis of Cyclodiene Resistance-Associated Mutations among Populations of the Sweetpotato Whitefly Bemisia tabaci , 1995 .

[46]  R. ffrench-Constant,et al.  A unique amino acid of the Drosophila GABA receptor with influence on drug sensitivity by two mechanisms. , 1994, The Journal of physiology.

[47]  A. Mutero,et al.  Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. A. Mckenzie,et al.  The genetic, molecular and phenotypic consequences of selection for insecticide resistance. , 1994, Trends in ecology & evolution.

[49]  F. S. Walters,et al.  A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb(+)-K+ efflux in vitro. , 1994, The Journal of biological chemistry.

[50]  R. French-Constant The molecular and population genetics of cyclodiene insecticide resistance. , 1994 .

[51]  J. Oakeshott,et al.  A cluster of esterase genes on chromosome 3R ofDrosophila melanogaster includes homologues of esterase genes conferring insecticide resistance inLucilia cuprina , 1994, Biochemical Genetics.

[52]  P. Knight,et al.  The receptor for Bacillus thuringiensis CrylA(c) delta‐endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N , 1994, Molecular microbiology.

[53]  Ian Denholm,et al.  Knockdown resistance (kdr) to DDT and pyrethroid insecticides maps to a sodium channel gene locus in the housefly (Musca domestica) , 1993, Molecular and General Genetics MGG.

[54]  R. ffrench-Constant,et al.  A point mutation in a Drosophila GABA receptor confers insecticide resistance , 1993, Nature.

[55]  T. Wilson,et al.  Transposable elements as initiators of insecticide resistance. , 1993, Journal of economic entomology.

[56]  P. Fort,et al.  Worldwide migration of amplified insecticide resistance genes in mosquitoes , 1991, Nature.

[57]  R. ffrench-Constant,et al.  Gene mapping and cross-resistance in cyclodiene insecticide-resistant Drosophila melanogaster (Mg.). , 1991, Genetical research.

[58]  T. Wilson,et al.  Resistance to juvenile hormone and an insect growth regulator in Drosophila is associated with an altered cytosolic juvenile hormone-binding protein. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[59]  F. Karch,et al.  Drosophila melanogaster acetylcholinesterase gene. Structure, evolution and mutations. , 1989, Journal of Molecular Biology.

[60]  B. Ganetzky,et al.  Molecular analysis of the para locus, a sodium channel gene in Drosophila , 1989, Cell.

[61]  A. Devonshire,et al.  Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. , 1988, The Biochemical journal.

[62]  D. Raftos,et al.  Genetics of an esterase associated with resistance to organophosphorus insecticides in the sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae) , 1985 .

[63]  A. W. Farnham Genetics of resistance of houseflies (Musca domestica L.) to pyrethroids. I. Knock‐down resistance , 1977 .

[64]  J. Busvine,et al.  THE MECHANISM OF MALATHION‐RESISTANCE IN THE BLOWFLY CHRYSOMYA PUTORIA , 1969 .

[65]  F. J. Oppenoorth,et al.  Allelic Genes in the Housefly Producing Modified Enzymes That Cause Organophosphate Resistance , 1960, Science.

[66]  K. Asperen,et al.  ORGANOPHOSPHATE RESISTANCE AND ESTERASE ACTIVITY IN HOUSEELIES , 1959 .

[67]  A. Shelton,et al.  Economic, ecological, food safety, and social consequences of the deployment of bt transgenic plants. , 2002, Annual review of entomology.

[68]  R. ffrench-Constant,et al.  Cyclodiene insecticide resistance: from molecular to population genetics. , 2000, Annual review of entomology.

[69]  D. Cutler,et al.  The evolution of an alpha-esterase pseudogene inactivated in the Drosophila melanogaster lineage. , 2000, Molecular biology and evolution.

[70]  R. Feyereisen Insect P450 enzymes. , 1999, Annual review of entomology.

[71]  J. Oakeshott,et al.  cDNA cloning, baculovirus-expression and kinetic properties of the esterase, E3, involved in organophosphorus resistance in Lucilia cuprina. , 1997, Insect biochemistry and molecular biology.

[72]  J. Oakeshott,et al.  Molecular cloning of an alpha-esterase gene cluster on chromosome 3r of Drosophila melanogaster. , 1996, Insect biochemistry and molecular biology.

[73]  J. Clark,et al.  Resistance to avermectins: extent, mechanisms, and management implications. , 1995, Annual review of entomology.

[74]  R. ffrench-Constant The molecular and population genetics of cyclodiene insecticide resistance. , 1994, Insect biochemistry and molecular biology.

[75]  J. A. Mckenzie,et al.  Ecological genetics of insecticide and acaricide resistance. , 1987, Annual review of entomology.