T-matrix method for modelling optical tweezers
暂无分享,去创建一个
Norman R. Heckenberg | Halina Rubinsztein-Dunlop | Timo A. Nieminen | Vincent L. Y. Loke | Alexander B. Stilgoe | H. Rubinsztein-Dunlop | T. Nieminen | N. Heckenberg | A. Stilgoe | V. Loke
[1] H. Rubinsztein-Dunlop,et al. Optical application and measurement of torque on microparticles of isotropic nonabsorbing material , 2003, physics/0309122.
[2] William B. McKnight,et al. From Maxwell to paraxial wave optics , 1975 .
[3] Michael I. Mishchenko,et al. Light scattering by randomly oriented axially symmetric particles , 1991 .
[4] P. Morse,et al. Methods of theoretical physics , 1955 .
[5] Norman R. Heckenberg,et al. Optical measurement of microscopic torques , 2001 .
[6] Shunichi Sato,et al. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam. , 2007, Optics letters.
[7] R. Gauthier,et al. Computation of the optical trapping force using an FDTD based technique. , 2005, Optics express.
[8] Norman R. Heckenberg,et al. Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization , 2009 .
[9] H. Rubinsztein-Dunlop,et al. Calculation of the T-matrix: general considerations and application of the point-matching method , 2003 .
[10] Jonathan Leach,et al. An optically driven pump for microfluidics. , 2006, Lab on a chip.
[11] Y. Lo,et al. Multiple scattering of EM waves by spheres part I--Multipole expansion and ray-optical solutions , 1971 .
[12] Toshimitsu Asakura,et al. Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .
[13] H. Rubinsztein-Dunlop,et al. Antireflection coating for improved optical trapping , 2008 .
[14] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[15] M. Mishchenko,et al. T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database , 2004 .
[16] J. P. Woerdman,et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[17] A. Ashkin. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.
[18] Halina Rubinsztein-Dunlop,et al. Manipulation and growth of birefringent protein crystals in optical tweezers. , 2004, Optics express.
[19] P. Waterman,et al. SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .
[20] H. Rubinsztein-Dunlop,et al. Symmetry and the generation and measurement of optical torque , 2008, 0812.2039.
[21] S. Stein. ADDITION THEOREMS FOR SPHERICAL WAVE FUNCTIONS , 1961 .
[22] Norman R. Heckenberg,et al. Computational modeling of optical tweezers , 2004, SPIE Optics + Photonics.
[23] B. C. Brock. Using Vector Spherical Harmonics to Compute Antenna Mutual Impedance from Measured or Computed Fields , 2000 .
[24] D. Mackowski,et al. Discrete dipole moment method for calculation of the T matrix for nonspherical particles. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.
[25] Fan Bai,et al. A programmable optical angle clamp for rotary molecular motors. , 2007, Biophysical journal.
[26] Gérard Gouesbet,et al. T-matrix formulation and generalized Lorenz–Mie theories in spherical coordinates , 2010 .
[27] G. Gouesbet,et al. Generic Formulation of a Generalized Lorenz‐Mie Theory for a Particle Illuminated by Laser Pulses , 2000 .
[28] A. Doicu. Null-field method to electromagnetic scattering from uniaxial anisotropic particles , 2003 .
[29] R. Fox,et al. Classical Electrodynamics, 3rd ed. , 1999 .
[30] Halina Rubinsztein-Dunlop,et al. The effect of Mie resonances on trapping in optical tweezers. , 2008, Optics express.
[31] A. Ashkin,et al. Optical trapping and manipulation of neutral particles using lasers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[32] G Gouesbet,et al. Discussion of two quadrature methods of evaluating beam-shape coefficients in generalized Lorenz-Mie theory. , 1996, Applied optics.
[33] Simon Hanna,et al. Holographic optical trapping of microrods and nanowires. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.
[34] H. Rubinsztein-Dunlop,et al. Measurement of the index of refraction of single microparticles. , 2006, Physical review letters.
[35] H. Rubinsztein-Dunlop,et al. Optical force field mapping in microdevices. , 2006, Lab on a chip.
[36] Halina Rubinsztein-Dunlop,et al. T-matrix calculation via discrete-dipole approximation, point matching and exploiting symmetry , 2008, 0812.2040.
[37] Thomas Wriedt,et al. Light scattering by single erythrocyte: Comparison of different methods , 2006 .
[38] O. Cruzan. Translational addition theorems for spherical vector wave functions , 1962 .
[39] Klaus Schulten,et al. The fast multipole algorithm , 2000, Comput. Sci. Eng..
[40] Michael Kahnert,et al. Irreducible representations of finite groups in the T-matrix formulation of the electromagnetic scattering problem. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.
[41] Larry D. Travis,et al. T-matrix method and its applications to electromagnetic scattering by particles: A current perspective , 2010 .
[42] Halina Rubinsztein-Dunlop,et al. Optical microrheology using rotating laser-trapped particles. , 2004, Physical review letters.
[43] H. Rubinsztein-Dunlop,et al. Calculation and optical measurement of laser trapping forces on non-spherical particles , 2001 .
[44] Ramani Duraiswami,et al. Recursions for the Computation of Multipole Translation and Rotation Coefficients for the 3-D Helmholtz Equation , 2003, SIAM J. Sci. Comput..
[45] Bruce T. Draine,et al. The discrete-dipole approximation and its application to interstellar graphite grains , 1988 .
[46] Halina Rubinsztein-Dunlop,et al. Synthesis and surface modification of birefringent vaterite microspheres. , 2009, Langmuir : the ACS journal of surfaces and colloids.
[47] G. Gouesbet,et al. Expressions to compute the coefficients gmnin the generalized Lorenz-Mie theory using finite series , 1988 .
[48] Carlos Bustamante,et al. Recent advances in optical tweezers. , 2008, Annual review of biochemistry.
[49] L. W. Davis,et al. Theory of electromagnetic beams , 1979 .
[50] P. Chaumet,et al. Coupled dipole method to compute optical torque: Application to a micropropeller , 2007 .
[51] C. Tropea,et al. Light Scattering from Small Particles , 2003 .
[52] M. E. Rose. Elementary Theory of Angular Momentum , 1957 .
[53] Halina Rubinsztein-Dunlop,et al. Picoliter viscometry using optically rotated particles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[54] Gérard Gouesbet,et al. Generalized Lorenz-Mie theories, the third decade: A perspective , 2009 .
[55] J. Kong,et al. Theory of microwave remote sensing , 1985 .
[56] L. Biedenharn. Angular momentum in quantum physics , 1981 .
[57] V. Rokhlin,et al. The fast multipole method (FMM) for electromagnetic scattering problems , 1992 .
[58] S. Ström. T matrix for electromagnetic scattering from an arbitrary number of scatterers with continuously varying electromagnetic properties , 1974 .
[59] Halina Rubinsztein-Dunlop,et al. Forces in optical tweezers with radially and azimuthally polarized trapping beams. , 2008, Optics letters.
[60] S. Kuo,et al. Using Optics to Measure Biological Forces and Mechanics , 2001, Traffic.
[61] A G Hoekstra,et al. Radiation forces in the discrete-dipole approximation. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.
[62] T J Sluckin,et al. Light scattering by optically anisotropic scatterers: T-matrix theory for radial and uniform anisotropies. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[63] D. White. Vector finite element modeling of optical tweezers , 2000 .
[64] Larry D. Travis,et al. Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers , 1998 .
[65] Thomas Wriedt,et al. T-matrix method for biaxial anisotropic particles , 2009 .
[66] Halina Rubinsztein-Dunlop,et al. Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation. , 2009, Optics express.
[67] Arthur Ashkin,et al. Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume With Commentaries , 2006 .
[68] S. Chu,et al. Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.
[69] J. Swinburne. Electromagnetic Theory , 1894, Nature.
[70] Halina Rubinsztein-Dunlop,et al. Physics of optical tweezers. , 2007, Methods in cell biology.
[71] G. Videen. Light Scattering from a Sphere Near a Plane Interface , 2000 .
[72] Anne Sentenac,et al. Efficient computation of optical forces with the coupled dipole method. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[73] P. Waterman. Matrix formulation of electromagnetic scattering , 1965 .
[74] F.Michael Kahnert,et al. Numerical methods in electromagnetic scattering theory , 2003 .
[75] E. Purcell,et al. Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .
[76] Mark S. Gordon,et al. Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion , 1999 .
[77] Antonio Alvaro Ranha Neves,et al. Exact partial wave expansion of optical beams with respect to an arbitrary origin. , 2006, Optics letters.
[78] Jonathan M. Taylor,et al. Multipole expansion of Bessel and Gaussian beams for Mie scattering calculations. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.
[79] Simon Parkin,et al. Optical Vortex Trapping and the Dynamics of Particle Rotation , 2008 .
[80] J. Bruning,et al. Multiple scattering of EM waves by spheres part II--Numerical and experimental results , 1971 .
[81] D. Mattis. Quantum Theory of Angular Momentum , 1981 .
[82] Halina Rubinsztein-Dunlop,et al. Orientation of optically trapped nonspherical birefringent particles. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[83] H. Rubinsztein-Dunlop,et al. Multipole Expansion of Strongly Focussed Laser Beams , 2003 .
[84] B. U. Felderhof,et al. Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field , 1996 .
[85] G. Arfken. Mathematical Methods for Physicists , 1967 .
[86] 山田 勝美. M. E. Rose: Multipole Fieds. John Wiley & Sons, Inc, New York. and Chapman & Hall, Ltd., London, 1955, 99頁 15×23cm 1980円。 , 1955 .
[87] Refractometry of organosilica microspheres. , 2007, Applied optics.
[88] Larry D. Travis,et al. Light scattering by nonspherical particles : theory, measurements, and applications , 1998 .
[89] Norman R. Heckenberg,et al. FDFD/T-matrix hybrid method , 2007 .
[90] H. Rubinsztein-Dunlop,et al. Numerical modelling of optical trapping , 2001 .
[91] Andrew A. Lacis,et al. Scattering, Absorption, and Emission of Light by Small Particles , 2002 .
[92] K. Stamnes,et al. Surface-integral formulation for electromagnetic scattering in spheroidal coordinates , 2003 .
[93] Norman R. Heckenberg,et al. Colloquium: Momentum of an electromagnetic wave in dielectric media , 2007, 0710.0461.
[94] W. Chew. Waves and Fields in Inhomogeneous Media , 1990 .
[95] A. Doicu,et al. Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions. , 1997, Applied optics.
[96] Norman R. Heckenberg,et al. Optical tweezers computational toolbox , 2007 .
[97] R. Tough. The transformation properties of vector multipole fields under a translation of coordinate origin , 1977 .
[98] G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .
[99] Wei Sun,et al. Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method , 2006 .
[100] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[101] H. Rubinsztein-Dunlop,et al. Orientation of biological cells using plane-polarized Gaussian beam optical tweezers , 2003, physics/0308105.
[102] D. White. Numerical Modeling of Optical Gradient Traps Using the Vector Finite Element Method , 2000 .
[103] Gregor Knöner,et al. Toolbox for Calculation of Optical Forces and Torques , 2007 .
[104] Michael W Berns,et al. Internet‐based robotic laser scissors and tweezers microscopy , 2005, Microscopy research and technique.
[105] J. Kong,et al. Scattering of Electromagnetic Waves: Theories and Applications , 2000 .
[106] Martin Head-Gordon,et al. Rotating around the quartic angular momentum barrier in fast multipole method calculations , 1996 .
[107] Towards efficient modelling of optical micromanipulation of complex structures , 2006, physics/0607231.
[108] Thomas Wriedt,et al. A Review of Elastic Light Scattering Theories , 1998 .
[109] M. Nieto-Vesperinas,et al. Time-averaged total force on a dipolar sphere in an electromagnetic field. , 2000, Optics letters.
[110] Thomas T. Perkins,et al. Optical traps for single molecule biophysics: a primer , 2009 .
[111] Yu-lin Xu,et al. Efficient Evaluation of Vector Translation Coefficients in Multiparticle Light-Scattering Theories , 1998 .
[112] Oto Brzobohatý,et al. Longitudinal optical binding of several spherical particles studied by the coupled dipole method , 2009 .
[113] Steven M Block,et al. Resource Letter: LBOT-1: Laser-based optical tweezers. , 2003, American journal of physics.
[114] H. Rubinsztein-Dunlop,et al. Characterization of optically driven fluid stress fields with optical tweezers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.