T-matrix method for modelling optical tweezers

We review the use of the T-matrix description of scattering, or the T-matrix method, for the calculation of optical forces and torques, especially for the computational modelling of optical tweezers. We consider both simple particles such as homogeneous isotropic spheres, spherical shells, spheroids, and so on, and complex particles, including anisotropic particles, inhomogenous particles, and geometrically complex particles.

[1]  H. Rubinsztein-Dunlop,et al.  Optical application and measurement of torque on microparticles of isotropic nonabsorbing material , 2003, physics/0309122.

[2]  William B. McKnight,et al.  From Maxwell to paraxial wave optics , 1975 .

[3]  Michael I. Mishchenko,et al.  Light scattering by randomly oriented axially symmetric particles , 1991 .

[4]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[5]  Norman R. Heckenberg,et al.  Optical measurement of microscopic torques , 2001 .

[6]  Shunichi Sato,et al.  Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam. , 2007, Optics letters.

[7]  R. Gauthier,et al.  Computation of the optical trapping force using an FDTD based technique. , 2005, Optics express.

[8]  Norman R. Heckenberg,et al.  Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization , 2009 .

[9]  H. Rubinsztein-Dunlop,et al.  Calculation of the T-matrix: general considerations and application of the point-matching method , 2003 .

[10]  Jonathan Leach,et al.  An optically driven pump for microfluidics. , 2006, Lab on a chip.

[11]  Y. Lo,et al.  Multiple scattering of EM waves by spheres part I--Multipole expansion and ray-optical solutions , 1971 .

[12]  Toshimitsu Asakura,et al.  Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .

[13]  H. Rubinsztein-Dunlop,et al.  Antireflection coating for improved optical trapping , 2008 .

[14]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[15]  M. Mishchenko,et al.  T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database , 2004 .

[16]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[17]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[18]  Halina Rubinsztein-Dunlop,et al.  Manipulation and growth of birefringent protein crystals in optical tweezers. , 2004, Optics express.

[19]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[20]  H. Rubinsztein-Dunlop,et al.  Symmetry and the generation and measurement of optical torque , 2008, 0812.2039.

[21]  S. Stein ADDITION THEOREMS FOR SPHERICAL WAVE FUNCTIONS , 1961 .

[22]  Norman R. Heckenberg,et al.  Computational modeling of optical tweezers , 2004, SPIE Optics + Photonics.

[23]  B. C. Brock Using Vector Spherical Harmonics to Compute Antenna Mutual Impedance from Measured or Computed Fields , 2000 .

[24]  D. Mackowski,et al.  Discrete dipole moment method for calculation of the T matrix for nonspherical particles. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Fan Bai,et al.  A programmable optical angle clamp for rotary molecular motors. , 2007, Biophysical journal.

[26]  Gérard Gouesbet,et al.  T-matrix formulation and generalized Lorenz–Mie theories in spherical coordinates , 2010 .

[27]  G. Gouesbet,et al.  Generic Formulation of a Generalized Lorenz‐Mie Theory for a Particle Illuminated by Laser Pulses , 2000 .

[28]  A. Doicu Null-field method to electromagnetic scattering from uniaxial anisotropic particles , 2003 .

[29]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[30]  Halina Rubinsztein-Dunlop,et al.  The effect of Mie resonances on trapping in optical tweezers. , 2008, Optics express.

[31]  A. Ashkin,et al.  Optical trapping and manipulation of neutral particles using lasers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[32]  G Gouesbet,et al.  Discussion of two quadrature methods of evaluating beam-shape coefficients in generalized Lorenz-Mie theory. , 1996, Applied optics.

[33]  Simon Hanna,et al.  Holographic optical trapping of microrods and nanowires. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  H. Rubinsztein-Dunlop,et al.  Measurement of the index of refraction of single microparticles. , 2006, Physical review letters.

[35]  H. Rubinsztein-Dunlop,et al.  Optical force field mapping in microdevices. , 2006, Lab on a chip.

[36]  Halina Rubinsztein-Dunlop,et al.  T-matrix calculation via discrete-dipole approximation, point matching and exploiting symmetry , 2008, 0812.2040.

[37]  Thomas Wriedt,et al.  Light scattering by single erythrocyte: Comparison of different methods , 2006 .

[38]  O. Cruzan Translational addition theorems for spherical vector wave functions , 1962 .

[39]  Klaus Schulten,et al.  The fast multipole algorithm , 2000, Comput. Sci. Eng..

[40]  Michael Kahnert,et al.  Irreducible representations of finite groups in the T-matrix formulation of the electromagnetic scattering problem. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[41]  Larry D. Travis,et al.  T-matrix method and its applications to electromagnetic scattering by particles: A current perspective , 2010 .

[42]  Halina Rubinsztein-Dunlop,et al.  Optical microrheology using rotating laser-trapped particles. , 2004, Physical review letters.

[43]  H. Rubinsztein-Dunlop,et al.  Calculation and optical measurement of laser trapping forces on non-spherical particles , 2001 .

[44]  Ramani Duraiswami,et al.  Recursions for the Computation of Multipole Translation and Rotation Coefficients for the 3-D Helmholtz Equation , 2003, SIAM J. Sci. Comput..

[45]  Bruce T. Draine,et al.  The discrete-dipole approximation and its application to interstellar graphite grains , 1988 .

[46]  Halina Rubinsztein-Dunlop,et al.  Synthesis and surface modification of birefringent vaterite microspheres. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[47]  G. Gouesbet,et al.  Expressions to compute the coefficients gmnin the generalized Lorenz-Mie theory using finite series , 1988 .

[48]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[49]  L. W. Davis,et al.  Theory of electromagnetic beams , 1979 .

[50]  P. Chaumet,et al.  Coupled dipole method to compute optical torque: Application to a micropropeller , 2007 .

[51]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[52]  M. E. Rose Elementary Theory of Angular Momentum , 1957 .

[53]  Halina Rubinsztein-Dunlop,et al.  Picoliter viscometry using optically rotated particles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Gérard Gouesbet,et al.  Generalized Lorenz-Mie theories, the third decade: A perspective , 2009 .

[55]  J. Kong,et al.  Theory of microwave remote sensing , 1985 .

[56]  L. Biedenharn Angular momentum in quantum physics , 1981 .

[57]  V. Rokhlin,et al.  The fast multipole method (FMM) for electromagnetic scattering problems , 1992 .

[58]  S. Ström T matrix for electromagnetic scattering from an arbitrary number of scatterers with continuously varying electromagnetic properties , 1974 .

[59]  Halina Rubinsztein-Dunlop,et al.  Forces in optical tweezers with radially and azimuthally polarized trapping beams. , 2008, Optics letters.

[60]  S. Kuo,et al.  Using Optics to Measure Biological Forces and Mechanics , 2001, Traffic.

[61]  A G Hoekstra,et al.  Radiation forces in the discrete-dipole approximation. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[62]  T J Sluckin,et al.  Light scattering by optically anisotropic scatterers: T-matrix theory for radial and uniform anisotropies. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  D. White Vector finite element modeling of optical tweezers , 2000 .

[64]  Larry D. Travis,et al.  Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers , 1998 .

[65]  Thomas Wriedt,et al.  T-matrix method for biaxial anisotropic particles , 2009 .

[66]  Halina Rubinsztein-Dunlop,et al.  Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation. , 2009, Optics express.

[67]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume With Commentaries , 2006 .

[68]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[69]  J. Swinburne Electromagnetic Theory , 1894, Nature.

[70]  Halina Rubinsztein-Dunlop,et al.  Physics of optical tweezers. , 2007, Methods in cell biology.

[71]  G. Videen Light Scattering from a Sphere Near a Plane Interface , 2000 .

[72]  Anne Sentenac,et al.  Efficient computation of optical forces with the coupled dipole method. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  P. Waterman Matrix formulation of electromagnetic scattering , 1965 .

[74]  F.Michael Kahnert,et al.  Numerical methods in electromagnetic scattering theory , 2003 .

[75]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .

[76]  Mark S. Gordon,et al.  Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion , 1999 .

[77]  Antonio Alvaro Ranha Neves,et al.  Exact partial wave expansion of optical beams with respect to an arbitrary origin. , 2006, Optics letters.

[78]  Jonathan M. Taylor,et al.  Multipole expansion of Bessel and Gaussian beams for Mie scattering calculations. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[79]  Simon Parkin,et al.  Optical Vortex Trapping and the Dynamics of Particle Rotation , 2008 .

[80]  J. Bruning,et al.  Multiple scattering of EM waves by spheres part II--Numerical and experimental results , 1971 .

[81]  D. Mattis Quantum Theory of Angular Momentum , 1981 .

[82]  Halina Rubinsztein-Dunlop,et al.  Orientation of optically trapped nonspherical birefringent particles. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  H. Rubinsztein-Dunlop,et al.  Multipole Expansion of Strongly Focussed Laser Beams , 2003 .

[84]  B. U. Felderhof,et al.  Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field , 1996 .

[85]  G. Arfken Mathematical Methods for Physicists , 1967 .

[86]  山田 勝美 M. E. Rose: Multipole Fieds. John Wiley & Sons, Inc, New York. and Chapman & Hall, Ltd., London, 1955, 99頁 15×23cm 1980円。 , 1955 .

[87]  Refractometry of organosilica microspheres. , 2007, Applied optics.

[88]  Larry D. Travis,et al.  Light scattering by nonspherical particles : theory, measurements, and applications , 1998 .

[89]  Norman R. Heckenberg,et al.  FDFD/T-matrix hybrid method , 2007 .

[90]  H. Rubinsztein-Dunlop,et al.  Numerical modelling of optical trapping , 2001 .

[91]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[92]  K. Stamnes,et al.  Surface-integral formulation for electromagnetic scattering in spheroidal coordinates , 2003 .

[93]  Norman R. Heckenberg,et al.  Colloquium: Momentum of an electromagnetic wave in dielectric media , 2007, 0710.0461.

[94]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[95]  A. Doicu,et al.  Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions. , 1997, Applied optics.

[96]  Norman R. Heckenberg,et al.  Optical tweezers computational toolbox , 2007 .

[97]  R. Tough The transformation properties of vector multipole fields under a translation of coordinate origin , 1977 .

[98]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[99]  Wei Sun,et al.  Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method , 2006 .

[100]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[101]  H. Rubinsztein-Dunlop,et al.  Orientation of biological cells using plane-polarized Gaussian beam optical tweezers , 2003, physics/0308105.

[102]  D. White Numerical Modeling of Optical Gradient Traps Using the Vector Finite Element Method , 2000 .

[103]  Gregor Knöner,et al.  Toolbox for Calculation of Optical Forces and Torques , 2007 .

[104]  Michael W Berns,et al.  Internet‐based robotic laser scissors and tweezers microscopy , 2005, Microscopy research and technique.

[105]  J. Kong,et al.  Scattering of Electromagnetic Waves: Theories and Applications , 2000 .

[106]  Martin Head-Gordon,et al.  Rotating around the quartic angular momentum barrier in fast multipole method calculations , 1996 .

[107]  Towards efficient modelling of optical micromanipulation of complex structures , 2006, physics/0607231.

[108]  Thomas Wriedt,et al.  A Review of Elastic Light Scattering Theories , 1998 .

[109]  M. Nieto-Vesperinas,et al.  Time-averaged total force on a dipolar sphere in an electromagnetic field. , 2000, Optics letters.

[110]  Thomas T. Perkins,et al.  Optical traps for single molecule biophysics: a primer , 2009 .

[111]  Yu-lin Xu,et al.  Efficient Evaluation of Vector Translation Coefficients in Multiparticle Light-Scattering Theories , 1998 .

[112]  Oto Brzobohatý,et al.  Longitudinal optical binding of several spherical particles studied by the coupled dipole method , 2009 .

[113]  Steven M Block,et al.  Resource Letter: LBOT-1: Laser-based optical tweezers. , 2003, American journal of physics.

[114]  H. Rubinsztein-Dunlop,et al.  Characterization of optically driven fluid stress fields with optical tweezers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.