Low activation high entropy alloys for next generation nuclear applications

[1]  K. Chaput,et al.  Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys , 2018, Acta Materialia.

[2]  U. Klement,et al.  Accelerated oxidation in ductile refractory high-entropy alloys , 2018, Intermetallics.

[3]  Yang Shao,et al.  Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys , 2018 .

[4]  V. B. Oliveira,et al.  Thermodynamic Simulation of Reduced Activation Ferritic–Martensitic Eurofer-97 Steel , 2017 .

[5]  Shengmin Guo,et al.  Senary refractory high-entropy alloy Cr x MoNbTaVW , 2015 .

[6]  H. Tanigawa,et al.  Dynamic tensile properties of reduced-activation ferritic steel F82H , 2015 .

[7]  Jien-Wei Yeh,et al.  Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys , 2015 .

[8]  P. Liaw,et al.  Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy , 2015, Nature Communications.

[9]  D. V. Louzguine-Luzgin,et al.  Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys , 2014 .

[10]  Tao Wang,et al.  A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties , 2014 .

[11]  Steven J. Zinkle,et al.  Designing Radiation Resistance in Materials for Fusion Energy , 2014 .

[12]  Ralph Spolenak,et al.  Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy , 2014 .

[13]  Qunying Huang,et al.  Recent progress of R&D activities on reduced activation ferritic/martensitic steels , 2013 .

[14]  Takanori Hirose,et al.  Development of the Toughness-Improved Reduced-Activation F82H Steel for DEMO Reactor , 2012 .

[15]  C. Woodward,et al.  Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy , 2012, Journal of Materials Science.

[16]  C. Woodward,et al.  Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint) , 2011 .

[17]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[18]  Indrajit Charit,et al.  Structural materials for Gen-IV nuclear reactors: Challenges and opportunities , 2008 .

[19]  Michael Rieth,et al.  Creep strength of reduced activation ferritic/martensitic steel Eurofer’97 , 2005 .

[20]  M. Hernández-Mayoral,et al.  Metallurgical properties of reduced activation martensitic steel Eurofer’97 in the as-received condition and after thermal ageing , 2002 .

[21]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[22]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[23]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[24]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[25]  M. Gorley Critical Assessment : Prospects for Reduced Activation Steel for Fusion Plant , 2016 .

[26]  N. Baluc,et al.  On the potentiality of using ferritic/martensitic steels as structural materials for fusion reactors , 2004 .

[27]  P. Maziasz,et al.  Precipitation sensitivity to alloy composition in Fe-Cr-Mn austenitic steels developed for reduced activation for fusion application , 1990 .