Syntheses, structures, catecholase activity, spectroscopy and electrochemistry of a series of manganese(III) complexes: Role of auxiliary anionic ligand on catecholase activity

[1]  N. Aliaga-Alcalde,et al.  Structures, magnetochemistry, spectroscopy, theoretical study, and catechol oxidase activity of dinuclear and dimer-of-dinuclear mixed-valence Mn(III)Mn(II) complexes derived from a macrocyclic ligand. , 2013, Inorganic chemistry.

[2]  T. Weyhermüller,et al.  Metal complex analogues of crown ethers as the preorganized motif to stabilize aquated proton in solid state , 2013 .

[3]  S. Majumder,et al.  Dinuclear mixed-valence Co(III)Co(II) complexes derived from a macrocyclic ligand: unique example of a Co(III)Co(II) complex showing catecholase activity. , 2013, Dalton transactions.

[4]  Sohini Sarkar,et al.  Triple bridged μ-phenoxo-bis(μ-carboxylate) and double bridged μ-phenoxo-μ1,1-azide/μ-methoxide dicopper(II) complexes: Syntheses, structures, magnetochemistry, spectroscopy and catecholase activity , 2013 .

[5]  N. Aliaga-Alcalde,et al.  pH‐Dependent Imidazolato Bridge Formation in Dicopper Complexes: Magnetic, Electrochemical, and Catalytic Repercussions , 2012 .

[6]  P. Halder,et al.  Dioxygen reactivity of biomimetic iron-catecholate and iron-o-aminophenolate complexes of a tris(2-pyridylthio)methanido ligand: aromatic C-C bond cleavage of catecholate versus o-iminobenzosemiquinonate radical formation. , 2012, Chemistry.

[7]  M. Fleck,et al.  A new tetraiminodiphenol macrocyclic ligand and its two dicopper(II) complexes: Syntheses, crystal structures, electrochemistry and magnetochemistry , 2012 .

[8]  P. Halder,et al.  Oxidative carbon-carbon bond cleavage of a α-hydroxy ketone by a functional model of 2,4'-dihydroxyacetophenone dioxygenase. , 2012, Angewandte Chemie.

[9]  Manas Sutradhar,et al.  Mononuclear Mn(III) and dinuclear Mn(III, III) Schiff base complexes: Influence of π–π stacking on magnetic properties , 2012 .

[10]  D. P. Goldberg,et al.  Generation of an isolable, monomeric manganese(V)-oxo complex from O2 and visible light. , 2012, Journal of the American Chemical Society.

[11]  N. Aliaga-Alcalde,et al.  Mechanistic insight on the catecholase activity of dinuclear copper complexes with distant metal centers. , 2012, Dalton transactions.

[12]  Cui-Ying Huang,et al.  Unprecedented preparation of bis -Schiff bases and their manganese(III) complexes with urease inhibitory activity , 2011 .

[13]  Sohini Sarkar,et al.  Heterobridged dinuclear, tetranuclear, dinuclear-based 1-d, and heptanuclear-based 1-D complexes of copper(II) derived from a dinucleating ligand: syntheses, structures, magnetochemistry, spectroscopy, and catecholase activity. , 2011, Inorganic chemistry.

[14]  P. Ghosh,et al.  Functional mimics of catechol oxidase by mononuclear copper complexes of sterically demanding [NNO] ligands , 2011 .

[15]  J. Howard,et al.  Bis(nitrate)diaquauranyl(VI) synthon to generate [1 x 2+1 x 1] and [1 x 1+1 x 1] co-crystalized 3d center dot center dot center dot 5f self-assemblies , 2011 .

[16]  Sohini Sarkar,et al.  Syntheses and crystal structures of dinuclear, trinuclear [2 × 1 + 1 × 1] and tetranuclear [2 × 1 + 1 × 2] copper(II)–d10 complexes (d10 ⇒ ZnII, CdII, HgII and AgI) derived from N,N′-ethylenebis(3-ethoxysalicylaldimine) , 2011 .

[17]  S. Hazra,et al.  Tetrametallic [2 × 1 + 1 × 2], octametallic double-decker–triple-decker [5 × 1 + 3 × 1], hexametallic quadruple-decker and dimetallic-based one-dimensional complexes of copper(II) and s block metal ions derived from N,N′-ethylenebis(3-ethoxysalicylaldimine) , 2010 .

[18]  J. Groves,et al.  A "push-pull" mechanism for heterolytic o-o bond cleavage in hydroperoxo manganese porphyrins. , 2010, Inorganic chemistry.

[19]  R. Peralta,et al.  Catecholase and DNase activities of copper(II) complexes containing phenolate‐type ligands , 2010 .

[20]  S. Hazra,et al.  A unique example of a three component cocrystal of metal complexes , 2010 .

[21]  U. Flörke,et al.  Syntheses, Crystal Structures and Mass Spectrometry of Mononuclear NiII Inclusion Product and Self-Assembled [2 × 1+1 × 2] NiII3MII (M = Cu, Ni, Co, Fe or Mn) Cocrystals Derived from N,N′-Ethylenebis(3-ethoxysalicylaldimine) , 2010 .

[22]  N. Aliaga-Alcalde,et al.  Synthesis, crystal structure, spectral and magnetic studies and catecholase activity of copper(II) complexes with di- and tri-podal ligands , 2010 .

[23]  M. Katada,et al.  Functional model for catecholase-like activity: Synthesis, structure, spectra, and catalytic activity of iron(III) complexes with substituted-salicylaldimine ligands , 2009 .

[24]  S. Hazra,et al.  Syntheses, structures and electrochemistry of manganese(III) complexes derived from N , N′ - o -phenylenebis(3-ethoxysalicylaldimine): Efficient catalyst for styrene epoxidation , 2009 .

[25]  S. Hazra,et al.  Cocrystallized Dinuclear-Mononuclear CuII3NaI and Double—Decker—Triple—Decker CuII5KI3 Complexes Derived from N,N'-Ethylenebis(3-ethoxysalicylaldimine) , 2009 .

[26]  E. Colacio,et al.  Binuclear Copper(II) Chelates with Heptadentate Ligands: Synthesis, Structure, Magnetic Properties, DFT Studies, and Catecholase and Hydrolytic DNA Cleavage Activity , 2009 .

[27]  E. Colacio,et al.  Binuclear copper(II) complexes with N4O3 coordinating heptadentate ligand: synthesis, structure, magnetic properties, density-functional theory study, and catecholase activity. , 2008, Inorganic chemistry.

[28]  Róbert Csonka,et al.  Catechol oxidase and phenoxazinone synthase activity of a manganese(II) isoindoline complex. , 2008, Journal of inorganic biochemistry.

[29]  L. Gahan,et al.  Structural and spectroscopic studies of a model for catechol oxidase , 2008, JBIC Journal of Biological Inorganic Chemistry.

[30]  Róbert Csonka,et al.  Synthesis, properties, and catecholase-like activity of the [1,4-di(6′-methyl-2′-pyridyl)aminophthalazine]dimanganese(II) complex, Mn2(6′Me2PAP)2Cl4 , 2007 .

[31]  A. Bortoluzzi,et al.  Catalytic promiscuity in biomimetic systems: catecholase-like activity, phosphatase-like activity, and hydrolytic DNA cleavage promoted by a new dicopper(II) hydroxo-bridged complex. , 2007, Inorganic chemistry.

[32]  U. Flörke,et al.  Syntheses, structures, and magnetic properties of mononuclear CuII and tetranuclear CuII3MII (M = Cu, Co, or Mn) compounds derived from N,N'-ethylenebis(3-ethoxysalicylaldimine): cocrystallization due to potential encapsulation of water. , 2006, Inorganic chemistry.

[33]  I. Szigyártó,et al.  Biomimetic oxidation of 3,5-di-tert-butylcatechol by dioxygen via Mn-enhanced base catalysis. , 2006, Inorganic chemistry.

[34]  J. Reedijk,et al.  Synthetic models of the active site of catechol oxidase: mechanistic studies. , 2006, Chemical Society reviews.

[35]  S. Batten,et al.  Catalytic oxidation of 3,5-di-tert-butylcatechol by a manganese(III) 18-azametallacrown-6 compound: Synthesis, crystal structure, fluorescence, magnetic and kinetic investigation , 2006 .

[36]  F. Lloret,et al.  Chemistry and reactivity of dinuclear manganese oxamate complexes: Aerobic catechol oxidation catalyzed by high-valent bis(oxo)-bridged dimanganese(IV) complexes with a homologous series of binucleating 4,5-disubstituted-o-phenylenedioxamate ligands , 2006 .

[37]  A. Rompel,et al.  Altering the Activity of Catechol Oxidase Model Compounds by Electronic Influence on the Copper Core , 2006 .

[38]  R. Peralta,et al.  New unsymmetric dinuclear Cu(II)Cu(II) complexes and their relevance to copper(II) containing metalloenzymes and DNA cleavage. , 2006, Journal of inorganic biochemistry.

[39]  Y. Hitomi,et al.  Aerobic catechol oxidation catalyzed by a bis(mu-oxo)dimanganese(III,III) complex via a manganese(II)-semiquinonate complex. , 2005, Inorganic chemistry.

[40]  S. Grimme,et al.  Less symmetrical dicopper(II) complexes as catechol oxidase models--an adjacent thioether group increases catecholase activity. , 2005, Chemistry.

[41]  K. Wieghardt,et al.  Dinuclear and mononuclear manganese(IV)-radical complexes and their catalytic catecholase activity. , 2004, Dalton transactions.

[42]  James Barber,et al.  Architecture of the Photosynthetic Oxygen-Evolving Center , 2004, Science.

[43]  V. Pecoraro,et al.  Structural, spectroscopic, and reactivity models for the manganese catalases. , 2004, Chemical reviews.

[44]  M. Giorgi,et al.  Catechol oxidase activity of dicopper complexes with N-donor ligands , 2003 .

[45]  V. Pecoraro,et al.  Catalytic oxidation of 3,5-Di-tert-butylcatechol by a series of mononuclear manganese complexes: synthesis, structure, and kinetic investigation. , 2003, Inorganic chemistry.

[46]  K. Wieghardt,et al.  A unique series of dinuclear transition metal-polyradical complexes with a m-phenylenediamine spacer and their catalytic reactivity. , 2003, Chemical communications.

[47]  M. Thirumavalavan,et al.  Synthesis of lateral macrobicyclic compartmental ligands: structural, magnetic, electrochemical, and catalytic studies of mono- and binuclear copper(II) complexes. , 2003, Inorganic chemistry.

[48]  L. Rossi,et al.  Catecholase activity of a series of dicopper(II) complexes with variable Cu-OH(phenol) moieties. , 2002, Inorganic chemistry.

[49]  C. Philouze,et al.  Dicopper(II) complexes of H-BPMP-type ligands: pH-induced changes of redox, spectroscopic ((19)F NMR studies of fluorinated complexes), structural properties, and catecholase activities. , 2002, Inorganic chemistry.

[50]  H. Pritzkow,et al.  Tuning the activity of catechol oxidase model complexes by geometric changes of the dicopper core. , 2002, Chemistry.

[51]  A. Mangrich,et al.  A new dinuclear unsymmetric copper(II) complex as model for the active site of catechol oxidase , 2001 .

[52]  Y. H. Liu,et al.  Structural correlation of catecholase-like activities of oxy-bridged dinuclear copper(II) complexes. , 2001, Journal of inorganic biochemistry.

[53]  B. Krebs,et al.  New functional models for catechol oxidases , 2000 .

[54]  H. Sigel,et al.  Manganese and its Role in Biological Processes , 2000, Metal-based drugs.

[55]  J. Sacchettini,et al.  Catechol oxidase - structure and activity. , 1999, Current opinion in structural biology.

[56]  B. Krebs,et al.  Structural and functional studies on model compounds of purple acid phosphatases and catechol oxidases , 1999 .

[57]  R. Mukherjee,et al.  Modeling Tyrosinase Monooxygenase Activity. Spectroscopic and Magnetic Investigations of Products Due to Reactions between Copper(I) Complexes of Xylyl-Based Dinucleating Ligands and Dioxygen: Aromatic Ring Hydroxylations and Irreversible Oxidation Products. , 1998, Inorganic chemistry.

[58]  L. Simándi,et al.  Ferroxime(II)-catalysed oxidation of 3,5-di-tert-butylcatechol by O2. Kinetics and mechanism† , 1999 .

[59]  James C. Sacchettini,et al.  Crystal structure of a plant catechol oxidase containing a dicopper center , 1998, Nature Structural Biology.

[60]  L. Simándi,et al.  Kinetics and mechanism of the cobaloxime(II)-catalysed oxidative dehydrogenation of 3,5-di-tert-butylcatechol by O2. A functional oxidase model , 1998 .

[61]  P. Zacharias,et al.  Studies on dinuclear metal complexes of macrocyclic ligands with varying chelate ring size , 1997 .

[62]  B. Krebs,et al.  Synthesis, structure and catecholase activity study of dinuclear copper(II) complexes† , 1997 .

[63]  E. Solomon,et al.  Multicopper Oxidases and Oxygenases. , 1996, Chemical reviews.

[64]  T. Katsuki,et al.  Catalytic asymmetric oxidations using optically active (salen)manganese(III) complexes as catalysts , 1995 .

[65]  Y. Moro-oka,et al.  Copper-Dioxygen Complexes. Inorganic and Bioinorganic Perspectives , 1994 .

[66]  V. Pecoraro,et al.  Interaction of Manganese with Dioxygen and Its Reduced Derivatives , 1994 .

[67]  K. Karlin,et al.  Structure and reactions of an eight-coordinate Mn(II) complex: [Mn(TMPA)2](ClO4)2 (TMPA=tris[(2-pyridyl)methyl]amine) , 1993 .

[68]  I. Ojima,et al.  Catalytic Asymmetric Synthesis , 1993 .

[69]  P. Turner,et al.  Metalloporphyrins as models for the cytochromes p-450 , 1991 .

[70]  K. A. Joergensen Transition-metal-catalyzed epoxidations , 1989 .

[71]  W. Geary The use of conductivity measurements in organic solvents for the characterisation of coordination compounds , 1971 .