Optimal control of stochastic prey-predator models

Optimal control of stochastic prey-predator models during infinite and finite time intervals is considered. Optimal feedback controlling functions are derived as non-linear functions of the densities of prey and predator populations using Lyapunov-Bellman technique. The densities of both prey and predator populations are obtained as functions of time. We will be concerned with time intervals of the control process and time dependence of the control functions.

[1]  A. S. Al-Ruzaiza,et al.  Optimal Control of the Equilibrium State of a Prey-Predator Model , 2002 .

[2]  V. Křivan,et al.  Optimal Foraging and Predator-Prey Dynamics , 1996, Theoretical population biology.

[3]  Vito Volterra,et al.  Leçons sur la théorie mathématique de la lutte pour la vie , 1931 .

[4]  Jan Eisner,et al.  Optimal foraging and predator-prey dynamics III. , 1996, Theoretical population biology.

[5]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.

[6]  A. J. Lotka,et al.  Elements of Physical Biology. , 1925, Nature.

[7]  Dmitriĭ Olegovich Logofet,et al.  Stability of Biological Communities , 1983 .

[8]  Selective strategies in food webs , 1993 .

[9]  D. Boukal,et al.  Lyapunov functions for Lotka–Volterra predator–prey models with optimal foraging behavior , 1999 .

[10]  Rinaldo B. Schinazi,et al.  Predator-prey and host-parasite spatial stochastic models , 1997 .

[11]  A. Leung Conditions for Global Stability Concerning a Prey-Predator Model with Delay Effects , 1979 .

[12]  V. Křivan,et al.  Optimal foraging and predator-prey dynamics, II. , 1999, Theoretical population biology.

[13]  H. Lorenz Nonlinear Dynamical Economics and Chaotic Motion , 1989 .

[14]  A. El-Gohary Optimal control of the genital herpes epidemic , 2001 .

[15]  H. Benabdellah Differential inclusions on closed sets in Banach spaces with application to sweeping process , 2004 .

[16]  S. Blower,et al.  Predicting and preventing the emergence of antiviral drug resistance in HSV-2 , 1998, Nature Medicine.