Binary space partitions of orthogonal subdivisions

We consider the problem of constructing binary space partitions (BSPs) for orthogonal subdivisions (space filling packings of boxes) in <i>d</i>-space. We show that a subdivision with <i>n</i> boxes can be refined into a BSP of size <i>O</i>(<i>n</i> d+1/3), for all <i>d</i> ≥ 3, and that such a partition can be computed in time <i>O</i>(<i>K</i> log <i>n</i>), where <i>K</i> is the size of the BSP produced. Our upper bound on the BSP size is tight for 3-dimensional subdivisions in higher dimensions, this is the first nontrivial result for general full-dimensional boxes. We also present a lower bound construction for a subdivision of <i>n</i> boxes in <i>d</i>-space that requires a BSP of size Ω(<i>n</i><sup>946;(d)</sup>), where <i>β</i>(<i>d</i>) converges to (1+ √5 )/2 as <i>d</i> → ∞.

[1]  R. Schmacher,et al.  Study for Applying Computer-Generated Images to Visual Simulation: (510842009-001) , 1969 .

[2]  Steven K. Feiner,et al.  Fast object-precision shadow generation for area light sources using BSP trees , 1992, I3D '92.

[3]  S. Muthukrishnan,et al.  On the Exact Size of the Binary Space Partitioning of Sets of Isothetic Rectangles with Applications , 2000 .

[4]  T. M. Murali,et al.  Efficient Hidden-Surface Removal in Theory and Practice , 1999 .

[5]  John Amanatides,et al.  Merging BSP trees yields polyhedral set operations , 1990, SIGGRAPH.

[6]  Mark de Berg,et al.  Linear Size Binary Space Partitions for Uncluttered Scenes , 2000, Algorithmica.

[7]  Bruce F. Naylor,et al.  Set operations on polyhedra using binary space partitioning trees , 1987, SIGGRAPH.

[8]  Joseph S. B. Mitchell,et al.  Binary Space Partitions for Axis-Parallel Segments, Rectangles, and Hyperrectangles , 2004, Discret. Comput. Geom..

[9]  F. Frances Yao,et al.  Optimal binary space partitions for orthogonal objects , 1990, SODA '90.

[10]  Steven K. Feiner,et al.  Near real-time shadow generation using BSP trees , 1989, SIGGRAPH '89.

[11]  Henry Fuchs,et al.  On visible surface generation by a priori tree structures , 1980, SIGGRAPH '80.

[12]  F. Frances Yao,et al.  Efficient binary space partitions for hidden-surface removal and solid modeling , 1990, Discret. Comput. Geom..

[13]  Csaba D. Tóth A Note on Binary Plane Partitions , 2001, SCG '01.

[14]  Subhash Suri,et al.  Binary space partitions for 3D subdivisions , 2003, SODA '03.

[15]  Alade O. Tokuta Motion planning using binary space partitioning , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[16]  T. M. Murali,et al.  Binary space partitions for fat rectangles , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[17]  Csaba D. Tóth Binary Space Partition for Orthogonal Fat Rectangles , 2003, ESA.

[18]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.