Comprehensive analysis of transport aircraft flight performance

Abstract This paper reviews the state-of-the art in comprehensive performance codes for fixed-wing aircraft. The importance of system analysis in flight performance is discussed. The paper highlights the role of aerodynamics, propulsion, flight mechanics, aeroacoustics, flight operation, numerical optimisation, stochastic methods and numerical analysis. The latter discipline is used to investigate the sensitivities of the sub-systems to uncertainties in critical state parameters or functional parameters. The paper discusses critically the data used for performance analysis, and the areas where progress is required. Comprehensive analysis codes can be used for mission fuel planning, envelope exploration, competition analysis, a wide variety of environmental studies, marketing analysis, aircraft certification and conceptual aircraft design. A comprehensive program that uses the multi-disciplinary approach for transport aircraft is presented. The model includes a geometry deck, a separate engine input deck with the main parameters, a database of engine performance from an independent simulation, and an operational deck. The comprehensive code has modules for deriving the geometry from bitmap files, an aerodynamics model for all flight conditions, a flight mechanics model for flight envelopes and mission analysis, an aircraft noise model and engine emissions. The model is validated at different levels. Validation of the aerodynamic model is done against the scale models DLR-F4 and F6. A general model analysis and flight envelope exploration are shown for the Boeing B-777-300 with GE-90 turbofan engines with intermediate passenger capacity (394 passengers in 2 classes). Validation of the flight model is done by sensitivity analysis on the wetted area (or profile drag), on the specific air range, the brake-release gross weight and the aircraft noise. A variety of results is shown, including specific air range charts, take-off weight–altitude charts, payload-range performance, atmospheric effects, economic Mach number and noise trajectories at F.A.R. landing points.

[1]  Martin R. Fink Noise Component Method for Airframe Noise , 1979 .

[2]  E. R. V. Driest,et al.  BOUNDARY LAYER TRANSITION--FREE-STREAM TURBULENCE AND PRESSURE GRADIENT EFFECTS, , 1963 .

[3]  J. Penner,et al.  Aviation and the Global Atmosphere , 1999 .

[4]  Heinz Hansen,et al.  First Measurements on an Airbus High Lift Configuration at ETW up to Flight Reynolds Number , 2002 .

[5]  Antonio Filippone,et al.  Flight Performance of Fixed- and Rotary-Wing Aircraft , 2006 .

[6]  Alexander Bolonkin,et al.  Optimal Pitch Thrust-Vector Angle and Benefits for all Flight Regimes , 2000 .

[7]  Sankar Jayaram,et al.  An object-oriented method for the definition of mission profiles for aircraft design , 1994 .

[8]  Saydean Zeldin,et al.  Maximum noise abatement trajectories. , 1974 .

[9]  Anthony J. Broderick Stratospheric Effects from Aviation , 1978 .

[10]  Stuart E. Rogers,et al.  Computation of Viscous Flow for a Boeing 777 Aircraft in Landing Configuration , 2000 .

[11]  Thomas J. Sooy,et al.  Aerodynamic Predictions, Comparisons, and Validations Using Missile DATCOM (97) and Aeroprediction 98 (AP98) , 2005 .

[12]  Francis J. Hale,et al.  Effects of Wind on Aircraft Cruise Performance , 1978 .

[13]  E. Hopkins,et al.  An evaluation of theories for predicting turbulent skin friction and heat transfer on flat plates at supersonic and hypersonic Mach numbers , 1971 .

[14]  B. P. Collins,et al.  Estimation of aircraft fuel consumption , 1982 .

[15]  Ilan Kroo,et al.  Framework for Aircraft Conceptual Design and Environmental Performance Studies , 2005 .

[16]  D. G. Crighton,et al.  Basic principles of aerodynamic noise generation , 1975 .

[17]  Richard Curran,et al.  An integrated systems engineering approach to aircraft design , 2006 .

[18]  Heinz Erzberger,et al.  FIXED-RANGE OPTIMUM TRAJECTORIES FOR SHORT-HAUL AIRCRAFT , 1976 .

[19]  Harri Ehtamo,et al.  VIATO-visual interactive aircraft trajectory optimization , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[20]  Florian R. Menter,et al.  Drag Prediction of Engine-Airframe Interference Effects with CFX-5 , 2004 .

[21]  Antonio Filippone On the benefits of lower Mach number aircraft cruise , 2007 .

[22]  Frank Thiele,et al.  The MEGAFLOW project , 2000 .

[23]  Wilfried P. J. Visser,et al.  GSP, a Generic Object-Oriented Gas Turbine Simulation Environment , 2000 .

[24]  U. Schumann On conditions for contrail formation from aircraft exhausts , 1996 .

[25]  Richard C. Miake-Lye,et al.  Environmental conditions required for contrail formation and persistence , 1998 .

[26]  Anthony M. Ingraldi,et al.  Experimental Study of Pylon Cross Sections for a Subsonic Transport Airplane , 1993 .

[27]  F. Neuman,et al.  Minimum-fuel turning climbout and descent guidance of transport jets , 1983 .

[28]  T. J. Barber,et al.  An Investigation of Strut-Wall Intersection Losses , 1978 .

[29]  E. J. Hopkins Charts for predicting turbulent skin friction from the Van Driest method (2) , 1972 .

[30]  Arno Ronzheimer,et al.  Three-Dimensional Navier-Stokes Simulations for Transport Aircraft High-Lift Configurations , 2001 .

[31]  F. Neuman,et al.  Optimal turning climb-out and descent of commercial jet aircraft , 1982 .

[32]  Pierre T. Kabamba,et al.  Escaping Microburst with Turbulence: Altitude, Dive, and Pitch Guidance Strategies , 2000 .

[33]  C. D. Harris Transonic aerodynamic characteristics of the 10-percent-thick NASA supercritical airfoil 31 , 1975 .

[34]  Harold S Johnson,et al.  Wind-tunnel Investigation at Low Speed of an Unswept Untapered Semispan Wing of Aspect Ratio 3.13 Equipped with Various 25-percent-chord Plain Flaps , 1950 .

[35]  J. Speyer,et al.  Periodic optical cruise of an atmospheric vehicle , 1985 .

[36]  Brett Malone,et al.  Multidisciplinary optimization in aircraft design using analytic technology models , 1991 .

[37]  J. Speyer Nonoptimality of the steady-state cruise for aircraft , 1976 .

[38]  U. Schumann Über Bedingungen zur Bildung von Kondensstreifen aus Flugzeugabgasen , 1996 .

[39]  P. Gelhausen,et al.  ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft , 1992 .

[40]  Andreas Schäfer,et al.  Historical and future trends in aircraft performance, cost, and emissions , 2001 .

[41]  M. S. Howe Acoustics of fluid-structure interactions , 1998 .

[42]  M. Lighthill On sound generated aerodynamically II. Turbulence as a source of sound , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  Egbert Torenbeek Cruise performance and range prediction reconsidered , 1997 .

[44]  Martin R. Fink,et al.  Airframe Noise Component Interaction Studies , 1980 .

[45]  Jack D. Mattingly,et al.  Elements of Gas Turbine Propulsion , 1996 .

[46]  H. Erzberger,et al.  Algorithm for fixed-range optimal trajectories , 1980 .

[47]  Barnes W. McCormick,et al.  Aerodynamics, Aeronautics and Flight Mechanics , 1979 .

[48]  R. John Hansman,et al.  Analysis of Aircraft Performance During Lateral Maneuvering for Microburst Avoidance , 1991 .

[49]  A. E. Bryson,et al.  A Steepest-Ascent Method for Solving Optimum Programming Problems , 1962 .

[50]  R. Noland,et al.  Reducing the climate change impacts of aviation by restricting cruise altitudes , 2002 .

[51]  Bernard Grossman,et al.  Numerical Prediction of Interference Drag of Strut-Surface Intersection in Transonic Flow , 2001 .

[52]  Daniel P. Raymer,et al.  Aircraft Design: A Conceptual Approach , 1989 .

[53]  Euler computation of the nearfield wake vortex of an aircraft in take-off configuration , 2000 .

[54]  Anthony J. Calise,et al.  Extended Energy Management Methods for Flight Performance Optimization , 1975 .

[55]  G. M. Lilley,et al.  THE PREDICTION OF AIRFRAME NOISE AND COMPARISON WITH EXPERIMENT , 2001 .

[56]  D. L. Bashioum,et al.  Computer flight planning in the north atlantic , 1965 .

[57]  W. H. Wentz,et al.  Wind tunnel force and pressure tests of a 21% thick general aviation airfoil with 20% aileron, 25% slotted flap and 10% slot-lip spoiler , 1979 .

[58]  F. White Viscous Fluid Flow , 1974 .

[59]  Hendrikus G. Visser,et al.  Optimal departure trajectories with respect to sleep disturbance , 2003 .

[60]  William F Hilton,et al.  High-speed aerodynamics , 1951 .

[61]  Hendrikus G. Visser,et al.  Optimization of Noise Abatement Departure Trajectories , 2001 .

[62]  A Generic Approach for Gas Turbine Adaptive Modeling , 2006 .

[63]  J. Katz,et al.  Low-Speed Aerodynamics , 1991 .

[64]  Anthony J. Broderick,et al.  EFFECTS OF CRUISE-ALTITUDE POLLUTION , 1975 .

[65]  M. Lighthill On sound generated aerodynamically I. General theory , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[66]  David P. Lockard,et al.  The Airframe Noise Reduction Challenge , 2004 .

[67]  Gottfried Sachs,et al.  Optimization of endurance performance , 1992 .

[68]  R. Kiock Comparison of Geometries of F4, F6 and ALVAST Model , 1997 .

[69]  Scott A. Morton,et al.  Accurate Drag Prediction Using Cobalt , 2006 .

[70]  H. Erzberger,et al.  Constrained optimum trajectories with specified range , 1980 .

[71]  Robert A. Golub,et al.  Empirical Prediction of Aircraft Landing Gear Noise , 2005 .

[72]  J. E. Green,et al.  Greener by Design — the technology challenge , 2002, The Aeronautical Journal (1968).

[73]  H. Ohta Analysis of Minimum Noise Landing Approach Trajectory , 1982 .

[74]  A. Nuic,et al.  Advanced Aircraft Performance Modeling for ATM: Enhancements to the Bada Model , 2005, 24th Digital Avionics Systems Conference.

[75]  Ian A. Waitz,et al.  MILITARY AVIATION AND THE ENVIRONMENT: HISTORICAL TRENDS AND COMPARISON TO CIVIL AVIATION , 2003 .

[76]  John Williams,et al.  Prediction Methods for Aircraft Aerodynamic Characteristics , 1974 .