Dose-equivalent response CR-39 track detector for personnel neutron dosimetry

Abstract A dose-equivalent response detector based on CR-39 has been designed to be applied for personnel neutron dosimetry. The intrinsic detection efficiency of bare CR-39 was first evaluated from irradiation experiments with monoenergetic neutrons and theoretical calculations. In the second step, the radiator effect was investigated for the purpose of sensitization to fast neutrons. A two-layer radiator consisting of deuterized dotriacontane (C32D66) and polyethylene (CH2) was designed. Finally, we made the CR-39 detector sensitive to thermal neutrons by doping with orthocarborane (B10H122C2), and also estimated the contribution of albedo neutrons. It was found that the new detector — boron-doped CR-39 with the two-layer radiator — would have a flat response with an error of about 70% in a wide energy region, ranging from thermal to 15 MeV.