Phase stability with cubic equations of state: Global optimization approach

Calculation of phase and chemical equilibria is of fundamental importance for the design and simulation of chemical processes. Methods of minimizing the Gibbs free energy provide equilibrium solutions that are candidates only for the true equilibrium solution, because the number and type of phases must be assumed before the Gibbs energy minimization problem can be formulated. The tangent plane stability criterion was used to determine the stability of a candidate equilibrium solution. The Gibbs energy minimization and tangent plane stability problems are challenging due to highly nonlinear thermodynamic functions. This work develops a global optimization approach for the tangent plane stability problem that provides a theoretical guarantee about the stability of the candidate equilibrium solution with computational efficiency. Cubic equations of state were used due to their ability to accurately predict the behavior of nonideal vapor and liquid phases across a broad range of pressures. The mathematical form of the stability problem was analyzed and nonlinear functions with special structure were identified to achieve faster convergence of the algorithm. This approach, when applied to the SRK, Peng-Robinson, and van der Waals cubic equations of state, could address a variety of mixing rules. Computational results on problems with two-eight components are presented.

[1]  O. Redlich,et al.  On the thermodynamics of solutions; an equation of state; fugacities of gaseous solutions. , 1949, Chemical reviews.

[2]  Selmer M. Johnson,et al.  Chemical Equilibrium in Complex Mixtures , 1958 .

[3]  K. Kobe The properties of gases and liquids , 1959 .

[4]  G. Soave Equilibrium constants from a modified Redlich-Kwong equation of state , 1972 .

[5]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[6]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[7]  Robert A. Heidemann Non-uniqueness in phase and reaction equilibrium computations , 1978 .

[8]  Warren D. Seider,et al.  Computation of Phase and Chemical Equilibrium: A Review , 1980 .

[9]  P. H. van Konynenburg,et al.  Critical lines and phase equilibria in binary van der Waals mixtures , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[10]  I. Grossmann,et al.  Computation of phase and chemical equilibria , 1981 .

[11]  C. McDermott,et al.  Three phase flash calculations using free energy minimisation , 1982 .

[12]  L. E. Baker,et al.  Gibbs energy analysis of phase equilibria , 1982 .

[13]  M. Michelsen The isothermal flash problem. Part I. Stability , 1982 .

[14]  M. Michelsen The isothermal flash problem. Part II. Phase-split calculation , 1982 .

[15]  James E. Falk,et al.  Jointly Constrained Biconvex Programming , 1983, Math. Oper. Res..

[16]  M. O. Ohanomah,et al.  Computation of multicomponent phase equilibria—Part III. Multiphase equilibria , 1984 .

[17]  M. O. Ohanamah,et al.  Computation of multicomponent phase equilibria—Part II. Liquid-liquid and solid-liquid equilibria , 1984 .

[18]  M. O. Ohanomah,et al.  Computation of multicomponent phase equilibria—Part I. Vapour-liquid equilibria , 1984 .

[19]  Stanley M. Walas,et al.  Phase equilibria in chemical engineering , 1985 .

[20]  J. Mullins,et al.  Evaluation of methods for calculating liquid-liquid phase-splitting , 1986 .

[21]  B. Marcos,et al.  Computation of complex equilibria by nonlinear optimization , 1988 .

[22]  C. Floudas,et al.  Global optimum search for nonconvex NLP and MINLP problems , 1989 .

[23]  V. Visweswaran,et al.  A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—II. Application of theory and test problems , 1990 .

[24]  A. Neumaier Interval methods for systems of equations , 1990 .

[25]  A. S. Cullick,et al.  New strategy for phase equilibrium and critical point calculations by thermodynamic energy analysis. Part I. Stability analysis and flash , 1991 .

[26]  Nicolas Kalogerakis,et al.  A method for the simultaneous phase equilibria and stability calculations for multiphase reacting and non-reacting systems , 1991 .

[27]  A. S. Cullick,et al.  New strategy for phase equilibrium and critical point calculations by thermodynamic energy analysis. Part II. Critical point calculations , 1991 .

[28]  Pierre Hansen,et al.  Global optimization of univariate Lipschitz functions: I. Survey and properties , 1989, Math. Program..

[29]  Tricritical lines and multiphase equilibria in quaternary mixtures , 1992 .

[30]  Wallace B. Whiting,et al.  Area method for prediction of fluid-phase equilibria , 1992 .

[31]  Svatopluk Poljak,et al.  Checking robust nonsingularity is NP-hard , 1993, Math. Control. Signals Syst..

[32]  Christodoulos A. Floudas,et al.  New properties and computational improvement of the GOP algorithm for problems with quadratic objective functions and constraints , 1993, J. Glob. Optim..

[33]  Christodoulos A. Floudas,et al.  Decomposition based and branch and bound global optimization approaches for the phase equilibrium problem , 1994, J. Glob. Optim..

[34]  Christodoulos A Floudas,et al.  Global minimum potential energy conformations of small molecules , 1994, J. Glob. Optim..

[35]  Christodoulos A. Floudas,et al.  Finding all solutions of nonlinearly constrained systems of equations , 1995, J. Glob. Optim..

[36]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[37]  C. Floudas,et al.  Global optimization for the phase and chemical equilibrium problem: Application to the NRTL equation , 1995 .

[38]  Christodoulos A. Floudas,et al.  Global optimization for the phase stability problem , 1995 .

[39]  Christodoulos A. Floudas,et al.  Global Optimization and Analysis for the Gibbs Free Energy Function Using the UNIFAC, Wilson, and ASOG Equations , 1995 .

[40]  Z. Fonyo,et al.  Comparative analysis of various heat pump schemes applied to C4 splitters , 1995 .

[41]  W. Seider,et al.  Homotopy-continuation method for stability analysis in the global minimization of the Gibbs free energy , 1995 .

[42]  Mark A. Stadtherr,et al.  Reliable phase stability analysis for cubic equation of state models , 1996 .

[43]  Christodoulos A. Floudas,et al.  Rigorous convex underestimators for general twice-differentiable problems , 1996, J. Glob. Optim..

[44]  C. Floudas,et al.  GLOPEQ: A new computational tool for the phase and chemical equilibrium problem , 1997 .

[45]  M. Stadtherr,et al.  Enhanced Interval Analysis for Phase Stability: Cubic Equation of State Models , 1998 .

[46]  Mark A. Stadtherr,et al.  Reliable computation of phase stability using interval analysis : Cubic equation of state models , 1998 .

[47]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[48]  Jiri Rohn,et al.  Sufficient Conditions for Regularity and Singularity of Interval Matrices , 1999, SIAM J. Matrix Anal. Appl..

[49]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[50]  Christian Jansson,et al.  An Algorithm for Checking Regularity of Interval Matrices , 1999, SIAM J. Matrix Anal. Appl..