Localized surface plasmon resonance spectroscopy and sensing.

Localized surface plasmon resonance (LSPR) spectroscopy of metallic nanoparticles is a powerful technique for chemical and biological sensing experiments. Moreover, the LSPR is responsible for the electromagnetic-field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes. This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size. We also describe studies on the distance dependence of the enhanced electromagnetic field and the relationship between the plasmon resonance and the Raman excitation energy. Lastly, we introduce a new form of LSPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances. The results from these fundamental studies guide the design of new sensing experiments, illustrated through applications in which researchers use both LSPR wavelength-shift sensing and SERS to detect molecules of chemical and biological relevance.

[1]  S. George,et al.  Erratum to Al2O3 thin film growth on Si (100) using binary reaction sequence chemistry [Thin Solid Films 292 (1997) 135―144] , 2009 .

[2]  R. V. Van Duyne,et al.  Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome p450. , 2006, Journal of the American Chemical Society.

[3]  George C Schatz,et al.  Localized surface plasmon resonance spectroscopy near molecular resonances. , 2006, Journal of the American Chemical Society.

[4]  C. Mirkin,et al.  Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. , 2006, Nano letters.

[5]  Jing Zhao,et al.  Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. , 2006, Journal of the American Chemical Society.

[6]  George C. Schatz,et al.  Electromagnetic mechanism of SERS , 2006 .

[7]  Federico Capasso,et al.  Surface plasmon resonances of free-standing gold nanowires fabricated by nanoskiving. , 2006, Angewandte Chemie.

[8]  Jin-Sil Choi,et al.  Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. , 2006, Angewandte Chemie.

[9]  J. Hafner,et al.  Optical properties of star-shaped gold nanoparticles. , 2006, Nano letters.

[10]  D. A. Stuart,et al.  Surface-enhanced Raman spectroscopy of half-mustard agent. , 2006, The Analyst.

[11]  Yoichi Kawakami,et al.  An original planar multireflection system for sensing using the local surface plasmon resonance of gold nanospheres , 2006 .

[12]  D. P. Fromm,et al.  Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. , 2006, Nano letters.

[13]  Younan Xia,et al.  Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver , 2006 .

[14]  D. A. Stuart,et al.  Surface Enhanced Raman Spectroscopy: New Materials, Concepts, Characterization Tools, and Applications , 2005 .

[15]  George C Schatz,et al.  Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography. , 2005, The journal of physical chemistry. B.

[16]  Molly M. Miller,et al.  Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. , 2005, The journal of physical chemistry. B.

[17]  George C Schatz,et al.  Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. , 2005, The journal of physical chemistry. B.

[18]  A Paul Alivisatos,et al.  Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. , 2005, Nano letters.

[19]  Tatsuro Endo,et al.  Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. , 2005, Analytical chemistry.

[20]  D. A. Stuart,et al.  Towards advanced chemical and biological nanosensors-An overview. , 2005, Talanta.

[21]  Olga Lyandres,et al.  Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer. , 2005, Analytical chemistry.

[22]  Y. Ozaki,et al.  Surface-Enhanced Raman Spectroscopy , 2005 .

[23]  Younan Xia,et al.  Localized surface plasmon resonance spectroscopy of single silver nanocubes. , 2005, Nano letters.

[24]  Younan Xia,et al.  Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[25]  R. V. Van Duyne,et al.  Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography. , 2005, Nano letters.

[26]  A. Athawale,et al.  Nonaqueous phase synthesis of copper nanoparticles. , 2005, Journal of nanoscience and nanotechnology.

[27]  Christy L. Haynes,et al.  Surface‐enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection , 2005 .

[28]  D. A. Stuart,et al.  Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy. , 2005, Analytical chemistry.

[29]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[30]  George C Schatz,et al.  Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. , 2005, Nano letters.

[31]  R. V. Van Duyne,et al.  Solution-phase, triangular ag nanotriangles fabricated by nanosphere lithography. , 2005, The journal of physical chemistry. B.

[32]  R. V. Van Duyne,et al.  Wavelength-scanned surface-enhanced Raman excitation spectroscopy. , 2005, The journal of physical chemistry. B.

[33]  C. Haynes,et al.  Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy , 2005 .

[34]  Younan Xia,et al.  Shape-Controlled Synthesis and Surface Plasmonic Properties of Metallic Nanostructures , 2005 .

[35]  Younan Xia,et al.  Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. , 2005, Angewandte Chemie.

[36]  Olga Lyandres,et al.  Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. , 2005, Journal of the American Chemical Society.

[37]  George C. Schatz,et al.  Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields , 2005 .

[38]  R. V. Van Duyne,et al.  Second harmonic excitation spectroscopy of silver nanoparticle arrays. , 2005, The journal of physical chemistry. B.

[39]  R. V. Van Duyne,et al.  Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor. , 2005, Journal of the American Chemical Society.

[40]  Tatsuro Endo,et al.  Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen–antibody reaction , 2005 .

[41]  R. Aroca,et al.  Surface-Enhancement of Fluorescence Near Noble Metal Nanostructures , 2005 .

[42]  Van Duyne Rp Physics. Molecular plasmonics. , 2004 .

[43]  R. V. Van Duyne,et al.  A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer. , 2004, Journal of the American Chemical Society.

[44]  A. Haes,et al.  A unified view of propagating and localized surface plasmon resonance biosensors , 2004, Analytical and bioanalytical chemistry.

[45]  Shuming Nie,et al.  Using Solution-Phase Nanoparticles, Surface-Confined Nanoparticle Arrays and Single Nanoparticles as Biological Sensing Platforms , 2004, Journal of Fluorescence.

[46]  W. P. Hall,et al.  A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Assay for Alzheimer's Disease , 2004 .

[47]  George C. Schatz,et al.  A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles , 2004 .

[48]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .

[49]  Joseph R. Lakowicz,et al.  Noble-Metal Surfaces for Metal-Enhanced Fluorescence , 2004 .

[50]  R. V. Van Duyne,et al.  A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. , 2004, Analytical chemistry.

[51]  N. Fang,et al.  Plasmonic Nanolithography , 2004 .

[52]  Harry A. Atwater,et al.  Surface plasmons for nanofabrication , 2003, SPIE MOEMS-MEMS.

[53]  T. Woodruff,et al.  Activin, Inhibin, and follistatin in ovarian physiology , 2003 .

[54]  Richard P. Van Duyne,et al.  Localized surface plasmon resonance immunoassay and verification using surface-enhanced Raman spectroscopy , 2003, SPIE Optics + Photonics.

[55]  Emily A. Smith,et al.  Surface Plasmon Resonance Imaging as a Tool to Monitor Biomolecular Interactions in an Array Based Format , 2003, Applied spectroscopy.

[56]  C. Mirkin,et al.  Controlling anisotropic nanoparticle growth through plasmon excitation , 2003, Nature.

[57]  C. Finch,et al.  Alzheimer's disease-affected brain: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Adam D. McFarland,et al.  Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity , 2003 .

[59]  T. Klar,et al.  Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering , 2003 .

[60]  C. Haynes,et al.  Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays † , 2003 .

[61]  Christy L. Haynes,et al.  Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy † , 2003 .

[62]  David R. Smith,et al.  Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles , 2003 .

[63]  Younan Xia,et al.  Shape‐Controlled Synthesis of Gold and Silver Nanoparticles. , 2003 .

[64]  Adam D. McFarland,et al.  A Nanoscale Optical Biosensor: Real-Time Immunoassay in Physiological Buffer Enabled by Improved Nanoparticle Adhesion , 2003 .

[65]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[66]  R. V. Van Duyne,et al.  Toward a glucose biosensor based on surface-enhanced Raman scattering. , 2003, Journal of the American Chemical Society.

[67]  M. Bawendi,et al.  Surface-enhanced emission from single semiconductor nanocrystals. , 2002, Physical review letters.

[68]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[69]  Steven M. George,et al.  Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates , 2002 .

[70]  David R. Smith,et al.  Shape effects in plasmon resonance of individual colloidal silver nanoparticles , 2002 .

[71]  Christy L. Haynes,et al.  Angle-Resolved Nanosphere Lithography: Manipulation of Nanoparticle Size, Shape, and Interparticle Spacing , 2002 .

[72]  Mikko Ritala,et al.  Chapter 2 – Atomic layer deposition , 2002 .

[73]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[74]  T. Morgan,et al.  Vaccination with soluble Aβ oligomers generates toxicity‐neutralizing antibodies , 2001, Journal of neurochemistry.

[75]  C. Haynes,et al.  Surface-Enhanced Raman Scattering Detected Temperature Programmed Desorption: Optical Properties, Nanostructure, and Stability of Silver Film over SiO2 Nanosphere Surfaces , 2001 .

[76]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[77]  K. Lance Kelly,et al.  Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers , 2001 .

[78]  R. Corn,et al.  Surface plasmon resonance imaging measurements of ultrathin organic films. , 2003, Annual review of physical chemistry.

[79]  C. Haynes,et al.  Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles , 2000 .

[80]  Lechner,et al.  Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance , 2000, Physical review letters.

[81]  V. A. Maroni,et al.  Surface-Enhanced Infrared Spectroscopy: A Comparison of Metal Island Films with Discrete and Nondiscrete Surface Plasmons , 2000 .

[82]  Christy L. Haynes,et al.  Nanosphere Lithography: Synthesis and Application of Nanoparticles with Inherently Anisotropic Structures and Surface Chemistry , 2000 .

[83]  George C. Schatz,et al.  Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles , 1999 .

[84]  Louis E. Brus,et al.  Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals , 1999 .

[85]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[86]  Keith T. Carron,et al.  Determination of the Distance Dependence and Experimental Effects for Modified SERS Substrates Based on Self-Assembled Monolayers Formed Using Alkanethiols , 1999 .

[87]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[88]  George C. Schatz,et al.  Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters , 1999 .

[89]  C Bechinger,et al.  Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy. , 1999, Biophysical journal.

[90]  T. Chinowsky,et al.  Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films , 1998 .

[91]  T. Morgan,et al.  Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Jan Greve,et al.  Surface Plasmon Resonance Multisensing , 1998 .

[93]  P Englebienne,et al.  Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. , 1998, The Analyst.

[94]  W. Knoll,et al.  Interfaces and thin films as seen by bound electromagnetic waves. , 1998, Annual review of physical chemistry.

[95]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[96]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[97]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[98]  George C. Schatz,et al.  A surface‐enhanced hyper‐Raman and surface‐enhanced Raman scattering study of trans‐1,2‐bis(4‐pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: Experiment and theory , 1996 .

[99]  Schatz,et al.  Surface-enhanced second-harmonic diffraction: Experimental investigation of selective enhancement. , 1996, Physical review. B, Condensed matter.

[100]  Xie,et al.  Single molecule emission characteristics in near-field microscopy. , 1995, Physical review letters.

[101]  G. Schatz,et al.  Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes , 1995 .

[102]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[103]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[104]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[105]  Schatz,et al.  Surface-enhanced second-harmonic diffraction: Selective enhancement by spatial harmonics. , 1994, Physical review. B, Condensed matter.

[106]  F. Aussenegg,et al.  Probing the evanescent field of propagating plasmon surface polaritons by fluorescence and Raman spectroscopies , 1993 .

[107]  Magnus Malmqvist,et al.  Biospecific interaction analysis using biosensor technology , 1993, Nature.

[108]  George C. Schatz,et al.  Spatially resolved surface enhanced second harmonic generation: Theoretical and experimental evidence for electromagnetic enhancement in the near infrared on a laser microfabricated Pt surface , 1989 .

[109]  George C. Schatz,et al.  A surface enhanced hyper‐Raman scattering study of pyridine adsorbed onto silver: Experiment and theory , 1988 .

[110]  G. Schatz,et al.  An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium , 1987 .

[111]  L. Krusin-Elbaum,et al.  Electrical Characterization of ZrN , 1986 .

[112]  A. Wokaun,et al.  Surface enhancement of optical fields , 1985 .

[113]  Alexander Wokaun,et al.  Surface-Enhanced Electromagnetic Processes , 1984 .

[114]  and H. Metiu,et al.  THE ELECTROMAGNETIC THEORY OF SURFACE ENHANCED SPECTROSCOPY , 1984 .

[115]  G. Schatz Theoretical Studies of Surface Enhanced Raman Scattering , 1984 .

[116]  Abraham Nitzan,et al.  Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces , 1980 .

[117]  R. P. Duyne,et al.  LASER EXCITATION OF RAMAN SCATTERING FROM ADSORBED MOLECULES ON ELECTRODE SURFACES , 1979 .

[118]  Martin Moskovits,et al.  Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals , 1978 .

[119]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[120]  M. Albrecht,et al.  Anomalously intense Raman spectra of pyridine at a silver electrode , 1977 .

[121]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .