Transparent glass ceramics have been prepared in the Ga(2)S(3)-GeS(2)-CsCl pseudoternary system using appropriate heat treatment time and temperature. In situ X-ray diffraction at the heat treatment temperature and (133)Cs and (71)Ga solid-state nuclear magnetic resonance have been performed in function of annealing time to understand the crystallization process. Both techniques have evidenced the nucleating agent role played by gallium with the formation of Ga(2)S(3) nanocrystals. On the other hand, cesium is incorporated very much later into the crystallites during the ceramization. Moreover, the addition of CsCl, which is readily integrated into the glassy network, permits us to shift the optical band gap toward shorter wavelength. Thus, new glass ceramics transmitting in the whole visible range up to 11.5 mum have been successfully synthesized from the (Ga(2)S(3))(35)-(GeS(2))(25)-CsCl(40) base glass composition.