Band energy modulation on Cu-doped Sb2S3-based photoelectrodes for charge generation and transfer property of quantum dot–sensitized solar cells

[1]  Usman Ali Shah,et al.  Wide Bandgap Sb2S3 Solar Cells , 2021, Advanced Functional Materials.

[2]  A. Tang,et al.  Multinary copper-based chalcogenide semiconductor nanocrystals: synthesis and applications in light-emitting diodes and bioimaging , 2020, Journal of Nanoparticle Research.

[3]  Subramania Angaiah,et al.  A wide solar spectrum light harvesting Ag2Se quantum dot-sensitized porous TiO2 nanofibers as photoanode for high-performance QDSC , 2019, Journal of Nanoparticle Research.

[4]  M. Shim,et al.  Efficient Type-II Heterojunction Nanorod Sensitized Solar Cells Realized by Controlled Synthesis of Core/Patchy-Shell Structure and CdS Cosensitization. , 2019, ACS applied materials & interfaces.

[5]  Shangfeng Yang,et al.  Template deposition of Sb2S3 for solid-state sensitized solar cells , 2019, Journal of Alloys and Compounds.

[6]  Yanli Ding,et al.  Nondestructive purification process for inorganic perovskite quantum dot solar cells , 2019, Journal of Nanoparticle Research.

[7]  Matthew M. Ackerman,et al.  Dual-band infrared imaging using stacked colloidal quantum dot photodiodes , 2019, Nature Photonics.

[8]  Jian Chen,et al.  Influence of ZnO nano-array interlayer on the charge transfer performance of quantum dot sensitized solar cells , 2019, Electrochimica Acta.

[9]  Lianjing Zhao,et al.  Facile Secondary Deposition for Improving Quantum Dot Loading in Fabricating Quantum Dot Solar Cells. , 2019, Journal of the American Chemical Society.

[10]  M. Artemyev,et al.  Performance improvement strategies for quantum dot-sensitized solar cells: a review , 2019, Journal of Materials Chemistry A.

[11]  Wenran Wang,et al.  Highly Efficient Zn-Cu-In-Se Quantum Dot-Sensitized Solar Cells through Surface Capping with Ascorbic Acid. , 2019, ACS applied materials & interfaces.

[12]  I. Chang,et al.  Correlated Roles of Temperature and Dimensionality for Multiple Exciton Generation and Electronic Structures in Quantum Dot Superlattices , 2019, The Journal of Physical Chemistry C.

[13]  G. Bester,et al.  Phonon-Assisted Auger Process Enables Ultrafast Charge Transfer in CdSe Quantum Dot/Organic Molecule , 2018, The Journal of Physical Chemistry C.

[14]  Tao Chen,et al.  Phosphotungstic Acid Regulated Chemical Bath Deposition of Sb2 S3 for High-Efficiency Planar Heterojunction Solar Cell , 2018, Energy Technology.

[15]  Tao Chen,et al.  Solution processed NiOx hole-transporting material for all-inorganic planar heterojunction Sb2S3 solar cells , 2018, Solar Energy Materials and Solar Cells.

[16]  T. Chen,et al.  Aqueous-Solution-Based Approach Towards Carbon-Free Sb2 S3 Films for High Efficiency Solar Cells. , 2018, ChemSusChem.

[17]  Shangfeng Yang,et al.  n-Type Doping of Sb2S3 Light-Harvesting Films Enabling High-Efficiency Planar Heterojunction Solar Cells. , 2018, ACS applied materials & interfaces.

[18]  Tao Chen,et al.  Direct solution deposition of device quality Sb2S3-xSex films for high efficiency solar cells , 2018, Solar Energy Materials and Solar Cells.

[19]  T. Chen,et al.  V2O5 as Hole Transporting Material for Efficient All Inorganic Sb2S3 Solar Cells. , 2018, ACS applied materials & interfaces.

[20]  F. Ciucci,et al.  Novel 2D Sb2S3 Nanosheet/CNT Coupling Layer for Exceptional Polysulfide Recycling Performance , 2018, Advanced Energy Materials.

[21]  Jiang Tang,et al.  Sb2S3 Solar Cells , 2018 .