Reusing historical interaction data for faster online learning to rank for IR
暂无分享,去创建一个
Katja Hofmann | M. de Rijke | Shimon Whiteson | Maarten de Rijke | Anne Schuth | Anne Schuth | Katja Hofmann | Shimon Whiteson
[1] Katja Hofmann,et al. Estimating interleaved comparison outcomes from historical click data , 2012, CIKM '12.
[2] Filip Radlinski,et al. Large-scale validation and analysis of interleaved search evaluation , 2012, TOIS.
[3] Wei Chu,et al. Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms , 2010, WSDM '11.
[4] Richard S. Sutton,et al. Associative search network: A reinforcement learning associative memory , 1981, Biological Cybernetics.
[5] Thorsten Joachims,et al. The K-armed Dueling Bandits Problem , 2012, COLT.
[6] Emine Yilmaz,et al. Semi-supervised learning to rank with preference regularization , 2011, CIKM '11.
[7] Thorsten Joachims,et al. Evaluating Retrieval Performance Using Clickthrough Data , 2003, Text Mining.
[8] Doina Precup,et al. Eligibility Traces for Off-Policy Policy Evaluation , 2000, ICML.
[9] Richard S. Sutton,et al. Introduction to Reinforcement Learning , 1998 .
[10] Tie-Yan Liu,et al. Learning to Rank for Information Retrieval , 2011 .
[11] Deepak Agarwal,et al. Online Models for Content Optimization , 2008, NIPS.
[12] Katja Hofmann,et al. A probabilistic method for inferring preferences from clicks , 2011, CIKM '11.
[13] Thorsten Joachims,et al. Interactively optimizing information retrieval systems as a dueling bandits problem , 2009, ICML '09.
[14] Filip Radlinski,et al. Comparing the sensitivity of information retrieval metrics , 2010, SIGIR.
[15] Katja Hofmann,et al. Information Retrieval manuscript No. (will be inserted by the editor) Balancing Exploration and Exploitation in Listwise and Pairwise Online Learning to Rank for Information Retrieval , 2022 .
[16] Thorsten Joachims,et al. Optimizing search engines using clickthrough data , 2002, KDD.
[17] Mark Sanderson,et al. Test Collection Based Evaluation of Information Retrieval Systems , 2010, Found. Trends Inf. Retr..
[18] Wei Chu,et al. A contextual-bandit approach to personalized news article recommendation , 2010, WWW '10.
[19] John Langford,et al. Exploration scavenging , 2008, ICML '08.
[20] Nick Craswell,et al. An experimental comparison of click position-bias models , 2008, WSDM '08.
[21] Peter Auer,et al. Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.
[22] Ester Samuel-Cahn. Combining unbiased estimators , 1994 .
[23] Yiqun Liu,et al. Incorporating revisiting behaviors into click models , 2012, WSDM '12.
[24] Richard S. Sutton,et al. Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.
[25] Chris Mesterharm,et al. Experience-efficient learning in associative bandit problems , 2006, ICML.
[26] Jaana Kekäläinen,et al. Cumulated gain-based evaluation of IR techniques , 2002, TOIS.
[27] Tie-Yan Liu,et al. Learning to rank for information retrieval , 2009, SIGIR.
[28] Gregory N. Hullender,et al. Learning to rank using gradient descent , 2005, ICML.
[29] Chao Liu,et al. Efficient multiple-click models in web search , 2009, WSDM '09.
[30] Dale Schuurmans,et al. Greedy Importance Sampling , 1999, NIPS.
[31] Filip Radlinski,et al. How does clickthrough data reflect retrieval quality? , 2008, CIKM '08.