Communications in Mathematical Physics Almost Sure Invariance Principle for Nonuniformly Hyperbolic Systems

We prove an almost sure invariance principle that is valid for general classes of nonuniformly expanding and nonuniformly hyperbolic dynamical systems. Discrete time systems and flows are covered by this result. In particular, the result applies to the planar periodic Lorentz flow with finite horizon.Statistical limit laws such as the central limit theorem, the law of the iterated logarithm, and their functional versions, are immediate consequences.

[1]  Jon Aaronson,et al.  An introduction to infinite ergodic theory , 1997 .

[2]  Statistical properties of a skew product with a curve of neutral points , 2003, Ergodic Theory and Dynamical Systems.

[3]  Walter Philipp,et al.  Approximation by Brownian motion for Gibbs measures and flows under a function , 1984, Ergodic Theory and Dynamical Systems.

[4]  Andrei Török,et al.  Central Limit Theorems and Invariance Principles¶for Time-One Maps of Hyperbolic Flows , 2002 .

[5]  Andrei Török,et al.  Statistical limit theorems for suspension flows , 2004 .

[6]  M. Pollicott,et al.  Invariance Principles for Interval Maps with an Indifferent Fixed Point , 2002 .

[7]  M. Ratner The central limit theorem for geodesic flows onn-dimensional manifolds of negative curvature , 1973 .

[8]  Sébastien Gouëzel Vitesse de décorrélation et théorèmes limites pour les applications non uniformément dilatantes , 2004 .

[9]  J. Lebowitz,et al.  Hard Ball Systems and the Lorentz Gas , 2000 .

[10]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[11]  Ian Melbourne,et al.  Decay of correlations, central limit theorems and approximation by Brownian motion for compact Lie group extensions , 2003, Ergodic Theory and Dynamical Systems.

[12]  N. Chernov Statistical properties of piecewise smooth hyperbolic systems in high dimensions , 1999 .

[13]  Jérôme Dedecker,et al.  On the functional central limit theorem for stationary processes , 2000 .

[14]  L. Young Recurrence times and rates of mixing , 1999 .

[15]  L. Young,et al.  Absolutely continuous invariant measures and random perturbations for certain one-dimensional maps , 1992, Ergodic Theory and Dynamical Systems.

[16]  M. Rosenblatt Central limit theorem for stationary processes , 1972 .

[17]  L. Young,et al.  STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY , 1998 .

[18]  Matthew Nicol,et al.  Statistical properties of endomorphisms and compact group extensions , 2004 .

[19]  Y. Sinai,et al.  Dynamical systems with elastic reflections , 1970 .

[20]  D. Dolgopyat On Dynamics of Mostly Contracting Diffeomorphisms , 2000 .

[21]  N. Chernov Decay of Correlations and Dispersing Billiards , 1999 .

[22]  J. Conze,et al.  Méthode de martingales et flot géodésique sur une surface de courbure constante négative , 2001, Ergodic Theory and Dynamical Systems.

[23]  W. Philipp,et al.  Almost sure invariance principles for partial sums of weakly dependent random variables , 1975 .

[24]  N. Chernov,et al.  Decay of correlations for Lorentz gases and hard balls , 2000 .

[25]  W. Parry,et al.  Zeta functions and the periodic orbit structure of hyperbolic dynamics , 1990 .

[26]  V. Baladi Positive transfer operators and decay of correlations , 2000 .

[27]  Carlangelo Liverani,et al.  Central Limit Theorem for Deterministic Systems , 1995 .

[28]  C. Liverani,et al.  A probabilistic approach to intermittency , 1999, Ergodic Theory and Dynamical Systems.

[29]  Hubert Hennion,et al.  Sur un théorème spectral et son application aux noyaux lipchitziens , 1993 .

[30]  H. Bruin,et al.  Decay of correlations in one-dimensional dynamics , 2002, math/0208114.

[31]  Stefano Luzzatto,et al.  Markov structures and decay of correlations for non-uniformly expanding dynamical systems☆ , 2002 .

[32]  Y. Sinai GIBBS MEASURES IN ERGODIC THEORY , 1972 .

[33]  C. Liverani Decay of correlations , 1995 .

[34]  T. Palstra,et al.  Encyclopedia of Materials , 2006 .

[35]  Livšic regularity for Markov systems , 2005, Ergodic Theory and Dynamical Systems.

[36]  Franz Hofbauer,et al.  Ergodic properties of invariant measures for piecewise monotonic transformations , 1982 .

[37]  Jon Aaronson,et al.  LOCAL LIMIT THEOREMS FOR PARTIAL SUMS OF STATIONARY SEQUENCES GENERATED BY GIBBS–MARKOV MAPS , 2001 .

[38]  C. Walkden,et al.  Invariance principles for iterated maps that contract on average , 2006 .

[39]  A. Armando,et al.  Backward inducing and exponential decay of correlations for partially hyperbolic attractors , 2002 .

[40]  F. Fer,et al.  Thermodynamic formalism. The mathematical structures of classical equilibrium statistical mechanics : Vol. 5. by David Ruelle, Addison Wesley, Reading, MA, 1978, $ 21.50 , 1980 .

[41]  Leonid A. Bunimovich,et al.  Statistical properties of two-dimensional hyperbolic billiards , 1991 .

[42]  Lai-Sang Young,et al.  Sinai-Bowen-Ruelle measures for certain Hénon maps , 1993 .