Amorphous Phase Modulus and Micro–Macro Scale Relationship in Polyethylene via in Situ SAXS and WAXS

The small strain mechanical behavior of bulk polyethylene was investigated at the local scale of the lamella stackings by means of combined in situ SAXS and WAXS at different testing temperatures. Three different thermal treatments on four materials afforded studying a wide range of crystallinities (Xc) and microstructures. The local strain in tensile direction of the amorphous phase in equatorial region of the spherulites was determined via SAXS. The amorphous to macroscopic strain ratio proved to be fairly constant in the preyield strain domain for every materials. This ratio also proved to be strongly dependent on Xc. The local tensile stress on the amorphous phase in equatorial region was assessed from the strain on the crystals as measured by WAXS, using theoretical values of the elastic constants. The apparent tensile modulus of the amorphous phase, Ma, was shown to reach a maximum value of 300 MPa at RT for Xc = 50% and exhibited a monotonic drop with increasing both Xc and temperature. Evidence wa...

[1]  O. Lame,et al.  In-situ SAXS study of the mesoscale deformation of polyethylene in the pre-yield strain domain: Influence of microstructure and temperature , 2014 .

[2]  O. Lame,et al.  In-situ SAXS study and modeling of the cavitation/crystal-shear competition in semi-crystalline polymers: Influence of temperature and microstructure in polyethylene , 2013 .

[3]  A. Atai,et al.  Micromechanical characterization of the interphase layer in semi‐crystalline polyethylene , 2013 .

[4]  F. Touchard,et al.  DIC Strain Measurements at the Micro-Scale in a Semi-Crystalline Polymer , 2013 .

[5]  A. Galeski,et al.  Plastic yielding of semicrystalline polymers affected by amorphous phase , 2013 .

[6]  O. Lame,et al.  A re-examination of the elastic modulus dependence on crystallinity in semi-crystalline polymers , 2011 .

[7]  I. Ward,et al.  Failure mechanisms in polyolefines: The role of crazing, shear yielding and the entanglement network , 2011 .

[8]  G. Rutledge,et al.  Plastic Deformation of Semicrystalline Polyethylene by Molecular Simulation , 2011 .

[9]  G. G. Peters,et al.  Micromechanical modeling of the elastic properties of semicrystalline polymers: A three‐phase approach , 2010 .

[10]  O. Lame,et al.  Small strain behavior of polyethylene: In situ SAXS measurements , 2010 .

[11]  M. Uchida,et al.  Finite element simulation of deformation behavior of semi-crystalline polymers with multi-spherulitic mesostructure , 2010 .

[12]  O. Lame,et al.  Polyethylene yielding behaviour: What is behind the correlation between yield stress and crystallinity? , 2009 .

[13]  Claude Vanmansart,et al.  Plastic deformation of spherulitic semi-crystalline polymers: An in situ AFM study of polybutene under tensile drawing , 2009 .

[14]  O. Godard,et al.  Effect of microstructure on crazing onset in polyethylene under tension , 2009 .

[15]  A. Penlidis,et al.  A Tensile Strain Hardening Test Indicator of Environmental Stress Cracking Resistance , 2008 .

[16]  S. Ahzi,et al.  Comparison of micromechanical models for the prediction of the effective elastic properties of semicrystalline polymers: Application to polyethylene , 2008 .

[17]  R. Séguéla,et al.  On the Natural Draw Ratio of Semi‐Crystalline Polymers: Review of the Mechanical, Physical and Molecular Aspects , 2007 .

[18]  S. Ahzi,et al.  Journal of Mechanics of Materials and Structures COMPOSITE MODELING FOR THE EFFECTIVE ELASTIC PROPERTIES OF SEMICRYSTALLINE POLYMERS , 2007 .

[19]  R. Keunings,et al.  Evaluation of different methods for the determination of the plateau modulus and the entanglement molecular weight , 2006 .

[20]  B. Sixou,et al.  Short-term mechanical and structural approaches for the evaluation of polyethylene stress crack resistance , 2006 .

[21]  Fahmi Bedoui,et al.  Micromechanical modeling of isotropic elastic behavior of semicrystalline polymers , 2006 .

[22]  M. Teeuwen,et al.  Strain hardening modulus as a measure of environmental stress crack resistance of high density polyethylene , 2005 .

[23]  R. Seguela Critical review of the molecular topology of semicrystalline polymers: The origin and assessment of intercrystalline tie molecules and chain entanglements , 2005 .

[24]  P. Sajkiewicz,et al.  ‘Intermediate phase’ in poly(ethylene) as elucidated by the WAXS. Analysis of crystallization kinetics , 2005 .

[25]  R. Pitchumani,et al.  A micromechanical model for the elastic properties of semicrystalline thermoplastic polymers , 2004 .

[26]  G. Régnier,et al.  Micromechanical modeling of elastic properties in polyolefins , 2004 .

[27]  K. Nitta,et al.  Direct observation of the deformation of isolated huge spherulites in isotactic polypropylene , 2003 .

[28]  Andrzej Galeski,et al.  Strength and toughness of crystalline polymer systems , 2003 .

[29]  Fpt Frank Baaijens,et al.  Micromechanical modeling of intraspherulitic deformation of semicrystalline polymers , 2003 .

[30]  Fpt Frank Baaijens,et al.  Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers , 2003 .

[31]  S. Nikolov,et al.  Multi-scale constitutive modeling of the small deformations of semi-crystalline polymers , 2002 .

[32]  Y. Germain,et al.  Physical and mechanical properties of polyethylene for pipes in relation to molecular architecture. II. Short‐term creep of isotropic and drawn materials , 2002 .

[33]  C. Fond Cavitation criterion for rubber materials: A review of void‐growth models , 2001 .

[34]  S. Nikolov,et al.  A micro/macro constitutive model for the small-deformation behavior of polyethylene , 2000 .

[35]  M. Doyle,et al.  On the effect of crystallinity on the elastic properties of semicrystalline polyethylene , 2000 .

[36]  Y. Pennec,et al.  Shear banding in polyamide 6 films as revealed by atomic force microscopy , 2000 .

[37]  K. Nitta,et al.  Role of tie molecules in the yielding deformation of isotactic polypropylene , 1999 .

[38]  H. Fuchs,et al.  Morphology and In Situ Deformation of Polyamide Films Investigated with Scanning Force Microscopy , 1997 .

[39]  L. J. Fina,et al.  Dynamic two-dimensional infra-red spectroscopy of the crystal—amorphous interphase region in low-density polyethylene , 1996 .

[40]  A. Hiltner,et al.  Classification of homogeneous ethylene‐octene copolymers based on comonomer content , 1996 .

[41]  A. Peacock,et al.  Tensile Properties of Crystalline Polymers: Random Copolymers of Ethylene , 1995 .

[42]  B. Wunderlich,et al.  Identification and quantitative analysis of the intermediate phase in a linear high‐density polyethylene , 1994 .

[43]  A. Peacock,et al.  Tensile Properties of Crystalline Polymers: Linear Polyethylene , 1994 .

[44]  William A. Goddard,et al.  Mechanical properties and force field parameters for polyethylene crystal , 1991 .

[45]  K. Nakamae,et al.  Elastic modulus of crystalline regions of polyethylene with different microstructures: Experimental proof of homogeneous stress distribution , 1991 .

[46]  D. Grubb,et al.  X-RAY MODULUS AND STRAIN DISTRIBUTION IN SINGLE FIBERS OF POLYETHYLENE , 1990 .

[47]  R. Alamo,et al.  The interphase thickness of linear polyethylene , 1990 .

[48]  B. Crist,et al.  Mechanical properties of model polyethylenes: tensile elastic modulus and yield stress , 1989 .

[49]  N. Brown,et al.  The effect of molecular weight on slow crack growth in linear polyethylene homopolymers , 1988 .

[50]  R. H. Boyd,et al.  Mechanical moduli of spherulitic lamellar semicrystalline polymers , 1986 .

[51]  M. Matsuo,et al.  Elastic modulus of polyethylene in the crystal chain direction as measured by X-ray diffraction , 1986 .

[52]  Thomas Taylor,et al.  Dynamic mechanical relaxations in polyethylene , 1985 .

[53]  C. Choy,et al.  Elastic moduli of ultradrawn polyethylene , 1985 .

[54]  R. H. Boyd Relaxation processes in crystalline polymers: molecular interpretation — a review , 1985 .

[55]  R. H. Boyd Relaxation processes in crystalline polymers: experimental behaviour — a review , 1985 .

[56]  W. Graessley,et al.  Model copolymers of ethylene with butene‐1 made by hydrogenation of polybutadiene: Chemical composition and selected physical properties , 1985 .

[57]  R. H. Boyd Strengths of the mechanical α, β- and γ-relaxation processes in linear polyethylene , 1984 .

[58]  R. Benson,et al.  Dynamic mechanical studies of α and β relaxations of polyethylenes , 1984 .

[59]  K. Kaji,et al.  Elastic moduli and structure of low density polyethylene , 1981 .

[60]  C. G'sell,et al.  In situ observation of the spherulite deformation in polybutene-1 (Modification I) , 1980 .

[61]  R. H. Boyd The modulus of the amorphous component in polyethylenes , 1979 .

[62]  F. Calleja,et al.  Distribution of chain defects and microstructure of melt crystallized polyethylene , 1978 .

[63]  A. Keller,et al.  Deformation of oriented polyethylene , 1975 .

[64]  E. H. Andrews Morphology and mechanical properties in semicrystalline polymers , 1974 .

[65]  R. F. Boyer An apparent double glass transition in semicrystalline polymers , 1973 .

[66]  J. C. Houck,et al.  Bulk modulus and density of polyethylene to 30 kbar , 1972 .

[67]  I. Ward,et al.  Mechanical relaxations in polyethylene , 1969 .

[68]  I. Ward,et al.  β Relaxations in polyethylenes and their anisotropy , 1968 .

[69]  P. Lehmann,et al.  Die isotherme Kompressibilität einiger amorpher und teilkristalliner Hochpolymerer im Temperaturbereich von 20–250 °C und bei Drucken bis zu 2000 kp/cm2 , 1962 .

[70]  Alan N. Gent,et al.  Internal rupture of bonded rubber cylinders in tension , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[71]  R. Androsch,et al.  Effect of Crystal Morphology and Crystallinity on the Mechanical α- and β-Relaxation Processes of Short-Chain Branched Polyethylene , 2005 .

[72]  Andrew M. Baker,et al.  Evidence for a partially ordered component in polyethylene from wide-angle X-ray diffraction , 2001 .

[73]  J. Hoffman,et al.  Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment , 1997 .

[74]  T. Kawamura,et al.  Glassy State and Glass Transition-Its Elucidation and New Applications. II. Molecular Dynamics Simulation Study on the Bulk Modulus above and below the Glass Transition Temperature. , 1996 .

[75]  Christian G'Sell,et al.  In situ observation of the plastic deformation of polypropylene spherulites under uniaxial tension and simple shear in the scanning electron microscope , 1995 .

[76]  D. Lacks,et al.  Simulation of the temperature dependence of mechanical properties of polyethylene , 1994 .

[77]  A. Argon,et al.  Structure and plastic deformation of polyethylene , 1994 .

[78]  N. Brown,et al.  DEPENDENCE OF SLOW CRACK GROWTH IN POLYETHYLENE ON BUTYL BRANCH DENSITY : MORPHOLOGY AND THEORY , 1991 .

[79]  D. Vanderhart,et al.  Morphological partitioning of ethyl branches in polyethylene by carbon-13 NMR , 1987 .

[80]  F. Horii,et al.  NMR approach to the phase structure of linear polyethylene , 1978 .

[81]  John D. Hoffman,et al.  The Rate of Crystallization of Linear Polymers with Chain Folding , 1976 .