Benchmarking in-memory database

We have witnessed exciting development of RAM technology in the past decade. The memory size grows rapidly and the price continues to decrease, so that it is feasible to deploy large amounts of RAM in a computer system. Several companies and research institutions have devoted a lot of resources to develop in-memory databases (IMDB) that implement queries after loading data into (virtual) memory in advance. The bloom of various in-memory databases pursues us to test and evaluate their performance objectively and fairly. Although the existing database benchmarks like Wisconsin benchmark and TPC-X series have achieved great success, they cannot suit for in-memory databases due to the lack of consideration of unique characteristics of an IMDB. In this study, we propose MemTest, a novel benchmark that concerns some major characteristics of an in-memory database. This benchmark constructs particular metrics, which cover processing time, compression ratio, minimal memory space and column strength of an in-memory database. We design a data model based on inter-bank transaction applications, and a data generator to support uniform and skew data distributions. The MemTest workload includes a set of queries and transactions against the metrics and data model. Finally, we illustrate the efficacy of MemTest through the implementations on two different in-memory databases.

[1]  Ioana Manolescu,et al.  XMark: A Benchmark for XML Data Management , 2002, VLDB.

[2]  Craig Freedman,et al.  Hekaton: SQL server's memory-optimized OLTP engine , 2013, SIGMOD '13.

[3]  Vishal Verma,et al.  In-Memory Database Systems - A Paradigm Shift , 2014, ArXiv.

[4]  Tilmann Rabl,et al.  Variations of the star schema benchmark to test the effects of data skew on query performance , 2013, ICPE '13.

[5]  Aoying Zhou,et al.  MemTest: A Novel Benchmark for In-memory Database , 2014, BPOE@ASPLOS/VLDB.

[6]  David J. DeWitt,et al.  The 007 Benchmark , 1993, SIGMOD '93.

[7]  Jianfeng Zhan,et al.  Big Data Benchmarks, Performance Optimization, and Emerging Hardware , 2014, Lecture Notes in Computer Science.

[8]  Matthias Nicola,et al.  EXRT: Towards a Simple Benchmark for XML Readiness Testing , 2010, TPCTC.

[9]  Matthias Nicola,et al.  An XML transaction processing benchmark , 2007, SIGMOD '07.

[10]  Harumi A. Kuno,et al.  The mixed workload CH-benCHmark , 2011, DBTest '11.

[11]  David J. DeWitt,et al.  The BUCKY Object-Relational Benchmark (Experience Paper) , 1997, SIGMOD Conference.

[12]  Jignesh M. Patel,et al.  The Michigan benchmark: towards XML query performance diagnostics , 2006, Inf. Syst..

[13]  Jim Gray,et al.  Benchmark Handbook: For Database and Transaction Processing Systems , 1992 .

[14]  Daniel J. Abadi,et al.  Column-stores vs. row-stores: how different are they really? , 2008, SIGMOD Conference.

[15]  Ingo Müller,et al.  Adaptive String Dictionary Compression in In-Memory Column-Store Database Systems , 2014, EDBT.

[16]  Michael Stonebraker,et al.  Linear Road: A Stream Data Management Benchmark , 2004, VLDB.

[17]  Ralf Hartmut Güting,et al.  BerlinMOD: a benchmark for moving object databases , 2009, The VLDB Journal.

[18]  P. Werstein A Performance Benchmark for Spatiotemporal Databases , 1998 .

[19]  David J. DeWitt,et al.  The BUCKY object-relational benchmark , 1997, SIGMOD '97.

[20]  Wang Shan,et al.  Main Memory Database TPC-H Workload Characterization on Modern Processor , 2008 .

[21]  Marie-Anne Neimat,et al.  Oracle TimesTen: An In-Memory Database for Enterprise Applications , 2013, IEEE Data Eng. Bull..

[22]  Wolfgang Lehner,et al.  SAP HANA database: data management for modern business applications , 2012, SGMD.

[23]  Ippokratis Pandis,et al.  From A to E: analyzing TPC's OLTP benchmarks: the obsolete, the ubiquitous, the unexplored , 2013, EDBT '13.

[24]  Jin Che Benchmarking Data Management Systems:From Traditional Database to Emergent Big Data , 2015 .

[25]  R. G. G. Cattell,et al.  Object operations benchmark , 1992, TODS.

[26]  Adam Silberstein,et al.  Benchmarking cloud serving systems with YCSB , 2010, SoCC '10.