Electronic Characterization of Organic Thin Films by Kelvin Probe Force Microscopy

This review highlights the potential of Kelvin probe force microscopy (KPFM) beyond imaging to simultaneously study structural and electronic properties of functional surfaces and interfaces. This is of paramount importance since it is well established that a solid surface possesses different properties than the bulk material. The versatility of the technique allows one to carry out investigations in a non-invasive way for different environmental conditions and sample types with resolutions of a few nanometers and some millivolts. KPFM can be used to acquire a wide knowledge of the overall electronic and electrical behavior of a sample surface. Moreover, by KPFM it is possible to study complex electronic phenomena in supramolecular engineered systems and devices. The combination of such a methodology with external stimuli, e.g., light irradiation, opens new doors to the exploration of processes occurring in nature or in artificial complex architectures. Therefore, KPFM is an extremely powerful technique that permits the unraveling of electronic (dynamic) properties of materials, enabling the optimization of the design and performance of new devices based on organic-semiconductor nanoarchitectures.

[1]  Inta Muzikante,et al.  Self-assembled monolayers of novel azobenzenes for optically induced switching , 1999 .

[2]  S. Nishiwaki,et al.  Kelvin probe force microscopy for the nano scale characterization of chalcopyrite solar cell materials and devices , 2003 .

[3]  Takahashi,et al.  Phase detection of electrostatic force by AFM with a conductive tip , 2000, Ultramicroscopy.

[4]  A. Stemmer,et al.  Resolution and contrast in Kelvin probe force microscopy , 1998 .

[5]  D. Schroder Surface voltage and surface photovoltage: history, theory and applications , 2001 .

[6]  Albert K. Henning,et al.  Two‐dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy , 1995 .

[7]  H. Sugimura,et al.  Surface potential microscopy for organized molecular systems , 2002 .

[8]  D. Friedman,et al.  Distribution of built-in electrical potential in GaInP2/GaAs tandem-junction solar cells , 2003 .

[9]  Martin Prutton,et al.  Introduction to surface physics , 1994 .

[10]  A. Chavez-Pirson,et al.  Nanometer‐scale imaging of potential profiles in optically excited n‐i‐p‐i heterostructure using Kelvin probe force microscopy , 1995 .

[11]  Takuji Takahashi,et al.  Tip-to-sample distance dependence of an electrostatic force in KFM measurements. , 2004, Ultramicroscopy.

[12]  E. Delamarche,et al.  Kelvin probe force microscopy on surfaces: Investigation of the surface potential of self-assembled monolayers on gold , 1999 .

[13]  J. Farges Organic Conductors: Fundamentals and Applications , 1994 .

[14]  K. Ishida,et al.  Nanoscale Electrical Properties of Molecular Films in the Vicinity of Platinum Ultrathin Film Electrode , 2003 .

[15]  K. C. Kao,et al.  Electrical Transport in Solids , 1983 .

[16]  C. Frisbie,et al.  Conducting Probe Atomic Force Microscopy: A Characterization Tool for Molecular Electronics , 1999 .

[17]  Liwei Chen,et al.  Photoionization of individual CdSe/CdS core/shell nanocrystals on silicon with 2-nm oxide depends on surface band bending , 2003 .

[18]  J. Pankow,et al.  Local built-in potential on grain boundary of Cu(In,Ga)Se2 thin films , 2004 .

[19]  T. Bjørnholm,et al.  Direct Visualization of the Nanoscale Morphology of Conducting Polythiophene Monolayers Studied by Electrostatic Force Microscopy , 2001 .

[20]  J. Blackman,et al.  Solid state , 1974, Nature.

[21]  Y. Sugawara,et al.  The Imaging Mechanism of Atomic-scale Kelvin Probe Force Microscopy and its Application to Atomic-Scale Force Mapping , 2003 .

[22]  H. Sugimura,et al.  Surface potential images of self‐assembled monolayers patterned by organosilanes: ab initio molecular orbital calculations , 2002 .

[23]  J. E. MacDonald,et al.  Quantitative electrostatic force microscopy-phase measurements , 2004 .

[24]  J. Gómez‐Herrero,et al.  Electrostatic force gradient signal: resolution enhancement in electrostatic force microscopy and improved Kelvin probe microscopy , 2003 .

[25]  Klaus Müllen,et al.  Superphenalene-based columnar liquid crystals. , 2004, Angewandte Chemie.

[26]  K. Matsushige,et al.  Local structures and electrical properties of organic molecular films investigated by non-contact atomic force microscopy , 2002 .

[27]  H. Mizuta,et al.  Probing electron charging in nanocrystalline Si dots using Kelvin probe force microscopy , 2004 .

[28]  Young Kuk,et al.  Imaging of a silicon pn junction under applied bias with scanning capacitance microscopy and Kelvin probe force microscopy , 2000 .

[29]  K. Ramanathan,et al.  Does the local built-in potential on grain boundaries of Cu(In,Ga)Se2 thin films benefit photovoltaic performance of the device? , 2004 .

[30]  A. Alessandrini,et al.  Work function dependence on the thickness and substrate of carbon contamination layers by Kelvin probe force microscopy , 2003 .

[31]  S. Hosaka,et al.  Vacuum compatible high‐sensitive Kelvin probe force microscopy , 1996 .

[32]  P. Samorí Scanning probe microscopies beyond imaging , 2004 .

[33]  C. Gerber,et al.  Golden interfaces: The Surface of Self‐Assembled Monolayers , 1996 .

[34]  Richard H. Friend,et al.  Formation of the accumulation layer in polymer field-effect transistors , 2003 .

[35]  H Takano,et al.  Chemical and biochemical analysis using scanning force microscopy. , 1999, Chemical reviews.

[36]  W. A. Zisman,et al.  A NEW METHOD OF MEASURING CONTACT POTENTIAL DIFFERENCES IN METALS , 1932 .

[37]  G. Poirier,et al.  Characterization of Organosulfur Molecular Monolayers on Au(111) using Scanning Tunneling Microscopy. , 1997, Chemical reviews.

[38]  A. Fechtenkötter,et al.  Langmuir and Langmuir-Blodgett films of amphiphilic hexa-peri-hexabenzocoronene: new phase transitions and electronic properties controlled by pressure. , 2001, Chemistry.

[39]  Ida Lee,et al.  Measurement of electrostatic potentials above oriented single photosynthetic reaction centers , 2000 .

[40]  M. Niwano,et al.  Kelvin Probe Study of Band Bending at Organic Semiconductor/Metal Interfaces: Examination of Fermi Level Alignment , 2004 .

[41]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[42]  C. Guasch,et al.  Surface potential mapping of biased pn junction with kelvin probe force microscopy: application to cross-section devices , 2004 .

[43]  D. Bonnell,et al.  Local behavior of complex materials: scanning probes and nano structure , 2003 .

[44]  Joachim,et al.  Nanoscale science of single molecules using local probes , 1999, Science.

[45]  Richard H. Friend,et al.  Close look at charge carrier injection in polymer field-effect transistors , 2003 .

[46]  J. A. Nichols,et al.  Potential imaging of pentacene organic thin-film transistors , 2003 .

[47]  G. Binnig,et al.  Tunneling through a controllable vacuum gap , 1982 .

[48]  M. Spencer,et al.  Cantilever effects on the measurement of electrostatic potentials by scanning Kelvin probe microscopy , 2001 .

[49]  H. Sirringhaus,et al.  Noncontact potentiometry of polymer field-effect transistors , 2002 .

[50]  Louis E. Brus,et al.  Quantitative Noncontact Electrostatic Force Imaging of Nanocrystal Polarizability , 2003 .

[51]  H. Sirringhaus,et al.  Correlation between surface photovoltage and blend morphology in polyfluorene-based photodiodes. , 2005, Nano letters.

[52]  Y. Rosenwaks,et al.  Direct measurement of minority carriers diffusion length using Kelvin probe force microscopy , 1999 .

[53]  James R. Matey,et al.  Scanning capacitance microscope , 1985 .

[54]  Lukas M. Eng,et al.  Accuracy and resolution limits of Kelvin probe force microscopy , 2005 .

[55]  K. Müllen,et al.  Influence of molecular order on the local work function of nanographene architectures: a Kelvin-probe force microscopy study. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[56]  B. M. Carthy,et al.  Kelvin probe force microscopy as a tool for characterizing chemical sensors , 2004 .

[57]  Louis E. Brus,et al.  Controlling Energy-Level Alignments at Carbon Nanotube/Au Contacts , 2003 .

[58]  H. Sugimura,et al.  Surface potential microscopy for chemistry of organic self-assembled monolayers in small domains , 2004 .

[59]  K. Matsushige,et al.  Surface potential measurements of phase-separated alkanethiol self-assembled monolayers by non-contact atomic force microscopy , 2004 .

[60]  N. S. Sariciftci,et al.  Kelvin probe force microscopy study on conjugated polymer/fullerene bulk heterojunction organic solar cells. , 2005, Nano letters.

[61]  T. Yamauchi,et al.  Size dependence of the work function in InAs quantum dots on GaAs(001) as studied by Kelvin force probe microscopy , 2004 .

[62]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[63]  P. Girard,et al.  Measurements of electric potential in a laser diode by Kelvin Probe Force Microscopy , 2000 .

[64]  M. Fujihira,et al.  Observation of stretched single DNA molecules by Kelvin probe force microscopy , 2003 .

[65]  D. P. Woodruff,et al.  Modern techniques of surface science , 1986 .

[66]  A. Jäger-Waldau,et al.  Kelvin probe force microscopy in ultra high vacuum using amplitude modulation detection of the electrostatic forces , 2000 .

[67]  C. Daniel Frisbie,et al.  Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy , 2003 .

[68]  J. E. Stern,et al.  Contact electrification using force microscopy. , 1989, Physical review letters.

[69]  David Keller,et al.  Scanning Force Microscopy in Biology , 1995 .

[70]  A. M. Baró,et al.  Resolution enhancement and improved data interpretation in electrostatic force microscopy , 2001 .

[71]  Juergen Reif,et al.  Scanning Kelvin probe and photoemission electron microscopy of organic source-drain structures , 2004 .

[72]  Richard H. Friend,et al.  A microscopic view of charge transport in polymer transistors , 2004 .

[73]  K. Ishida,et al.  Surface Potential Measurement of Oligothiophene Ultrathin Films by Kelvin Probe Force Microscopy , 2001 .

[74]  K. Leo,et al.  Fermi level determination in organic thin films by the Kelvin probe method , 1996 .

[75]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[76]  M. McGovern,et al.  Surface immobilized biochemical macromolecules studied by scanning Kelvin microprobe. , 2000, Faraday discussions.

[77]  J. Hölzl,et al.  Solid Surface Physics , 1979 .

[78]  Y. Ouchi,et al.  Electronic structure of organic/metal interfaces , 2001 .

[79]  S. Akita,et al.  Kelvin Probe Force Microscopy Imaging Using Carbon Nanotube Probe , 2001 .

[80]  L. Kronik,et al.  Surface photovoltage phenomena: theory, experiment, and applications , 1999 .

[81]  K. Seki,et al.  Energy level alignment and band bending at model interfaces of organic electroluminescent devices , 2000 .

[82]  David B. Janes,et al.  Electrostatic investigation into the bonding of poly(phenylene) thiols to gold , 2002 .

[83]  Lord Kelvin,et al.  V. Contact electricity of metals , 1898 .

[84]  Y. Rosenwaks,et al.  Measuring minority-carrier diffusion length using a Kelvin probe force microscope , 2000 .

[85]  A M Baró,et al.  Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[86]  S. Kishimoto,et al.  Contact Potential Measurement of Carbon Nanotube by Kelvin Probe Force Microscopy , 2003 .