Risk-averse estimation, an axiomatic approach to inference, and Wallace-Freeman without MML

We define a new class of Bayesian point estimators, which we refer to as risk averse. Using this definition, we formulate axioms that provide natural requirements for inference, e.g. in a scientific setting, and show that for well-behaved estimation problems the axioms uniquely characterise an estimator. Namely, for estimation problems in which some parameter values have a positive posterior probability (such as, e.g., problems with a discrete hypothesis space), the axioms characterise Maximum A Posteriori (MAP) estimation, whereas elsewhere (such as in continuous estimation) they characterise the Wallace-Freeman estimator. Our results provide a novel justification for the Wallace-Freeman estimator, which previously was derived only as an approximation to the information-theoretic Strict Minimum Message Length estimator. By contrast, our derivation requires neither approximations nor coding.

[1]  W. Rudin Principles of mathematical analysis , 1964 .

[2]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[3]  Arun Siddharth Konagurthu,et al.  On Representing Protein Folding Patterns Using Non-Linear Parametric Curves , 2014, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[4]  Yuan Jin,et al.  A Two Tiered Finite Mixture Modelling Framework to Cluster Customers on EFTPOS Network , 2015, Australasian Conference on Artificial Intelligence.

[5]  David L. Dowe,et al.  Foreword re C. S. Wallace , 2008, Comput. J..

[6]  Ying Zhang,et al.  Subspace Clustering Under Complex Noise , 2019, IEEE Transactions on Circuits and Systems for Video Technology.

[7]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[8]  Bevan K. Youse,et al.  Introduction to real analysis , 1972 .

[9]  J. K. Hunter,et al.  Measure Theory , 2007 .

[10]  Sami Bourouis,et al.  Color image segmentation with bounded generalized Gaussian mixture model and feature selection , 2018, 2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP).

[11]  Michael Brand,et al.  MML Is Not Consistent for Neyman-Scott , 2016, IEEE Transactions on Information Theory.

[12]  C. S. Wallace,et al.  Statistical and Inductive Inference by Minimum Message Length (Information Science and Statistics) , 2005 .

[13]  C. S. Wallace,et al.  Estimation and Inference by Compact Coding , 1987 .

[14]  Chris S. Wallace,et al.  The Complexity of Strict Minimum Message Length Inference , 2002, Comput. J..

[15]  J. Rissanen Stochastic complexity and the mdl principle , 1987 .

[16]  S. M. Ali,et al.  A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .

[17]  Jorma Rissanen,et al.  Minimum Description Length Principle , 2010, Encyclopedia of Machine Learning.

[18]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[19]  E. Makalic,et al.  Minimum message length analysis of multiple short time series , 2016 .

[20]  Subhashis Ghosal,et al.  A Review of Consistency and Convergence of Posterior Distribution , 2022 .

[21]  Arto Luoma,et al.  Bayesian Model Selection , 2016 .

[22]  Lloyd Allison,et al.  The Bits Between Proteins , 2018, 2018 Data Compression Conference.

[23]  Friedrich Götze,et al.  Fisher information and the central limit theorem , 2012 .

[24]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[25]  L. M. M.-T. Theory of Probability , 1929, Nature.

[26]  D. Pollard A User's Guide to Measure Theoretic Probability by David Pollard , 2001 .

[27]  David L. Dowe,et al.  Statistical compression-based models for text classification , 2016, 2016 Fifth International Conference on Eco-friendly Computing and Communication Systems (ICECCS).

[28]  David L. Dowe,et al.  MML, hybrid Bayesian network graphical models, statistical consistency, invarianc , 2010 .

[29]  David L. Dowe,et al.  Minimum message length and generalized Bayesian nets with asymmetric languages , 2005 .

[30]  Nizar Bouguila,et al.  MML-Based Approach for Determining the Number of Topics in EDCM Mixture Models , 2018, Canadian Conference on AI.

[31]  J. Nash THE BARGAINING PROBLEM , 1950, Classics in Game Theory.

[32]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.