Disjunctive Logic Program = Horn Program + Control Program

This paper presents an alternative view on propositional disjunctive logic program: Disjunctive program = Control program + Horn program. For this we introduce a program transformation which transforms a disjunctive logic program into a Horn program and a so called control program. The control program consists of only disjunctions of new propositional atoms and controls the "execution" of the Horn program. The relationship between original and transformed programs is established by using circumscription. Based on this relationship a new minimal model reasoning approach is developed. Due to the transformation it is straightforward to incorporate SLD-resolution into the proof procedure.

[1]  Teodor C. Przymusinski An Algorithm to Compute Circumscription , 1989, Artif. Intell..

[2]  Peter Baumgartner,et al.  Computing Answers with Model Elimination , 1997, Artif. Intell..

[3]  Jürgen Dix,et al.  Reducing Disjunctive to Non-Disjunctive Semantics by Shift-Operations , 1996, Fundam. Informaticae.

[4]  Jürgen Dix,et al.  A Framework to Incorporate Non-Monotonic Reasoning Into Constraint Logic Programming , 1998, J. Log. Program..

[5]  Ilkka Niemell A Tableau Calculus for Minimal Model Reasoning Ilkka Niemel a a Tableau Calculus for Minimal Model Reasoning , 1996 .

[6]  Teodor C. Przymusinski,et al.  On the Relationship Between Circumscription and Negation as Failure , 1989, Artif. Intell..

[7]  Carlo Simon,et al.  The Petri Net Tools Neptun and Poseidon , 1997 .

[8]  Matthew L. Ginsberg A Circumscriptive Theorem Prover , 1989, Artif. Intell..

[9]  J. W. Lloyd,et al.  Foundations of logic programming; (2nd extended ed.) , 1987 .

[10]  Jürgen Ebert,et al.  A Generic System to Support Multi-Level Understanding of Heterogeneous Software , 1997 .

[11]  Jürgen Ebert,et al.  Graph Based Modeling and Implementation with EER / GRAL , 1996, ER.

[12]  Peter Baumgartner,et al.  Hyper Tableaux , 1996, JELIA.

[13]  Lutz Priese,et al.  Abstract Fairness and Semantics , 1997, Theor. Comput. Sci..

[14]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[15]  Thomas Marx,et al.  NetCASE -- a Petri Net based Method for Database Application Design and Generation , 1995 .

[16]  Wenjin Lu Minimal Model Generation Based on E-hyper Tableaux , 1997, KI.

[17]  Jürgen Dix,et al.  Knowledge Representation with Logic Programs , 1997, LPKR.

[18]  Luís Moniz Pereira,et al.  Prolegomena to Logic Programming for Non-monotonic Reasoning , 1996, NMELP.

[19]  Jürgen Dix,et al.  Towards Well-Behaved Semantics Suitable for Aggregation , 1997 .

[20]  J. McCarthy Circumscription|a Form of Nonmonotonic Reasoning , 1979 .

[21]  Jürgen Dix,et al.  Logisches Programmieren mit Negation und Disjunktion , 1996, Künstliche Intell..

[22]  Harro Wimmel Fachberichte Informatik on Some Compositional Petri Net Semantics Universitt at Koblenz{landau on Some Compositional Petri Net Semantics , 1995 .

[23]  Jan Małuszyński Logic Programming, Proceedings of the 1997 International Symposium, Port Jefferson, Long Island, NY, USA, October 13-16, 1997 , 1997, ILPS.

[24]  U. Furbach Re nements for Restart Model Elimination , 1996 .

[25]  Frieder Stolzenburg,et al.  Membership-Constraints and Complexity in Logic Programming with Sets , 1996, FroCoS.

[26]  Angelika Franzke GRAL 2.0: A Reference Manual , 1997 .

[27]  Martin Volk,et al.  Constraint Logic Programming for Computational Linguistics , 1996, LACL.

[28]  Jürgen Dix,et al.  Characterizations and Implementation of Static Semantics of Disjunctive Programs , 1996 .

[29]  Peter Baumgartner,et al.  PROTEIN: A PROver with a Theory Extension INterface , 1994, CADE.

[30]  Katsumi Inoue,et al.  Embedding Negation as Failure into a Model Generation Theorem Prover , 1992, CADE.

[31]  François Bry,et al.  SATCHMO: A Theorem Prover Implemented in Prolog , 1988, CADE.

[32]  Ilkka Niemelä Implementing Circumscription Using a Tableau Method , 1996, ECAI.

[33]  Stefan Brass,et al.  D-wfs: a Connuent Calculus and an Equivalent Characterization , 1995 .

[34]  Peter Baumgartner,et al.  Calculi for Disjunctive Logic Programming , 1997, ILPS.

[35]  Jack Minker,et al.  On Indefinite Databases and the Closed World Assumption , 1987, CADE.

[36]  Chandrabose Aravindan An Abductive Framework for Negation in Disjunctive Logic Programming , 1996, JELIA.

[37]  P. Simons Eecient Implementation of the Well- Founded and Stable Model Seman- Tics , 1996 .

[38]  Lutz Priese,et al.  Algebraic Characterization of Petri Net Pomset Semantics , 1997, CONCUR.

[39]  Wolfgang Albrecht,et al.  Integrating Fixed Priority and Static Scheduling to Maintain External Consistency , 1997 .

[40]  J. Ebert,et al.  Querying Graph Structures with GQL , 1996 .

[41]  Stephan Philippi,et al.  Integration of Integrity Constraints into Object-Oriented Database Schema according to ODMG-93 , 1995 .

[42]  Jürgen Dix,et al.  Non-monotonic Extensions of Logic Programming: Theory, Implementation and Applications , 1996 .

[43]  Ilkka Niemelä,et al.  A Tableau Calculus for Minimal Model Reasoning , 1996, TABLEAUX.

[44]  Lutz Priese,et al.  A Uniform Approach to True-Concurrency and Interleaving Semantics for Petri Nets , 1998, Theor. Comput. Sci..

[45]  Peter Baumgartner,et al.  Tableaux for Diagnosis Applications , 1997, TABLEAUX.

[46]  Gottfried Vossen,et al.  I-Serializability: Generalized Correctness for Transaction-Based Environments , 1997, Inf. Process. Lett..

[47]  Jürgen Ebert,et al.  Meta-CASE in Practice: a Case for KOGGE , 1997, CAiSE.

[48]  Chandrabose Aravindan DisLoP: A Disjunctive Logic Programming System Based on PROTEIN Theorem Prover , 1996, KI.

[49]  J. Lloyd Foundations of Logic Programming , 1984, Symbolic Computation.

[50]  Christoph Steigner,et al.  Modelling Timeouts in Protocol Design , 1995 .

[51]  Anil Nerode,et al.  Computing Circumscriptive Databases: I. Theory and Algorithms , 1995, Inf. Comput..

[52]  Peter Baumgartner,et al.  Model Elimination, Logic Programming and Computing Answers , 1995, IJCAI.

[53]  Jorge Lobo,et al.  Foundations of disjunctive logic programming , 1992, Logic Programming.

[54]  Vladimir Lifschitz,et al.  Computing Circumscription , 1985, IJCAI.

[55]  F. Stolzenburg,et al.  Analyzing Rule Sets for the Calculation of Banking Fees by a Theorem Prover with Constraints , 1998 .

[56]  Jürgen Dix,et al.  A Comparison of STATIC Semantics with D-WFS , 1996 .

[57]  A. Winter Generic Support for Understanding Heterogeneous Software Generic Support for Understanding Heterogeneous Software , 1995 .

[58]  Chandrabose Aravindan,et al.  A Rational and Efficient Algorithm for View Deletion in Databases , 1997, ILPS.

[59]  Frieder Stolzenburg,et al.  A Flexible System for Constraint Disjunctive Logic Programming , 1998, Künstliche Intell..