Two-dimensional hybrid simulations of the oblique electromagnetic alpha/proton instability in the solar wind

In the solar wind, alpha particles are observed to flow faster than the core protons. In this paper, two-dimensional hybrid simulations are performed to investigate the nonlinear evolution of oblique Alfven waves excited by an alpha/proton beam instability in a low beta plasma. The propagation angles of the excited waves are within a finite range suggesting the generation of oblique Alfven waves. During the nonlinear evolution, both the wave numbers and frequencies of the waves drift to smaller values, and the propagation angles decrease. At the same time, the propagation angle of the dominant mode also changes. Eventually the plasma system reaches a marginally stable state according to linear theory.

[1]  G. Howes Inertial range turbulence in kinetic plasmas , 2007, 0711.4358.

[2]  M. Goldstein,et al.  Spectral Exponents of Kinetic and Magnetic Energy Spectra in Solar Wind Turbulence , 2007 .

[3]  Dan Winske,et al.  Kinetic Alfvén waves and electron physics. I Generation from ion-ion streaming , 2007 .

[4]  L. Xia,et al.  Hybrid simulations of parallel and oblique electromagnetic alpha/proton instabilities in the solar wind , 2006 .

[5]  Q. Lu,et al.  Proton and He 2+ Temperature Anisotropies in the Solar Wind Driven by Ion Cyclotron Waves , 2005 .

[6]  Q. Lu,et al.  Formation of He2+ shell‐like distributions downstream of the Earth's bow shock , 2005 .

[7]  A. Viñas,et al.  Proton core temperature effects on the relative drift and anisotropy evolution of the ion beam instability in the fast solar wind , 2002 .

[8]  S. Habbal,et al.  Damping of fast and ion cyclotron oblique waves in the multi‐ion fast solar wind , 2001 .

[9]  L. Yin,et al.  Alpha/proton magnetosonic instability in the solar wind , 2000 .

[10]  L. Yin,et al.  Electromagnetic alpha/proton instabilities in the solar wind , 2000 .

[11]  S. Habbal,et al.  Proton/alpha magnetosonic instability in the fast solar wind , 2000 .

[12]  Charles W. Smith,et al.  Dissipation range dynamics: Kinetic Alfvn waves and the importance of , 1999 .

[13]  S. Gary,et al.  Electromagnetic proton/proton instabilities in the solar wind: Simulations , 1999 .

[14]  J. Hollweg,et al.  Heating and cooling of protons by turbulence-driven ion cyclotron waves in the fast solar wind , 1999 .

[15]  William Daughton,et al.  Electromagnetic proton/proton instabilities in the solar wind , 1998 .

[16]  J. Geiss,et al.  Kinetic properties of heavy ions in the solar wind from SWICS/Ulysses , 1995 .

[17]  W. Feldman,et al.  Ulysses near‐ecliptic observations of differential flow between protons and alphas in the solar wind , 1994 .

[18]  David J. McComas,et al.  Evidence for ion jets in the high‐speed solar wind , 1993 .

[19]  S. Gary,et al.  Electromagnetic ion/ion instabilities and their consequences in space plasmas: A review , 1991 .

[20]  D. Winske,et al.  HYBRID SIMULATION CODES WITH APPLICATION TO SHOCKS AND UPSTREAM WAVES , 1985 .

[21]  S. Gary,et al.  Observed constraint on proton‐proton relative velocities in the solar wind , 2000 .

[22]  H. Rosenbauer,et al.  Solar Wind Helium Ions: Observations of the Helios Solar Probes Between 0.3 and 1 AU E. MARSCH, 1 K.-H. MOHLHXUSER, 2 H. ROSENBAUER, 1 , 1982 .