Characterization of a medium size Xe/TMA TPC instrumented with microbulk Micromegas, using low-energy γ-rays

NEXT-MM is a general-purpose high pressure (10 bar, ~ 25 l active volume) Xenon-based TPC, read out in charge mode with an 0.8 cm × 0.8 cm-segmented 700 cm2 plane (1152 ch) of the latest microbulk-Micromegas technology. It has been recently commissioned at University of Zaragoza as part of the R&D of the NEXT 0νββ experiment, although the experiment's first stage is currently being built based on a SiPM/PMT-readout concept relying on electroluminescence. Around 2 million events were collected during the last months, stemming from the low energy γ-rays emitted by a 241Am source when interacting with the Xenon gas (Eγ = 26, 30, 59.5 keV). The localized nature of such events around atmospheric pressure, the long drift times, as well as the possibility to determine their production time from the associated α particle in coincidence, allow the extraction of primordial properties of the TPC filling gas, namely the drift velocity, diffusion and attachment coefficients. In this work we focus on the little explored combination of Xe and trimethylamine (TMA) for which, in particular, such properties are largely unknown. This gas mixture offers potential advantages over pure Xenon when aimed at Rare Event Searches, mainly due to its Penning characteristics, wave-length shifting properties and reduced diffusion, and it is being actively investigated by our collaboration. The chamber is currently operated at 2.7 bar, as an intermediate step towards the envisaged 10 bar. We report here its performance as well as a first implementation of the calibration procedures that have allowed the extension of the previously reported energy resolution to the whole readout plane (10.6% FWHM@30 keV).

S. Carcel | N. Yahlali | D. Calvet | R. Esteve | J.F.C.A. Veloso | J.M.F. dos Santos | F. Druillole | L. Labarga | J. J. Gomez-Cadenas | P. Ferrario | F. Monrabal | J. F. Toledo | Z. Tsamalaidze | V. M. Gehman | J. Martin-Albo | D. Lorca | J. A. Hernando Morata | M. Egorov | L. M. Moutinho | L.M.P. Fernandes | I. G. Irastorza | L. Serra | H. Gomez | A. Goldschmidt | I. Liubarsky | F. Aznar | E.D.C. Freitas | D. Gonzalez-Diaz | R. M. Gutierrez | A. Martinez | G. Martinez-Lema | C.M.B. Monteiro | F. J. Mora | J. Munoz Vidal | A. Simon | C. Sofka | J. Torrent | A. Le Coguie | H. Natal da Luz | J. Hauptman | M. Losada | A. Gil | J. Rodriguez | T. Dafni | F.I.G.M. Borges | L. Ripoll | J.A.M. Lopes | E. Ferrer-Ribas | F. J. Iguaz | M. A. Jinete | D. C. Herrera | A. Rodriguez | J. T. White | G. Navarro | R. Webb | A. Goldschmidt | D. Nygren | L. Labarga | M. Losada | J. Hauptman | Z. Tsamalaidze | I. Giomataris | R. Palma | A. Laing | H. N. Luz | P. Ferrario | G. Navarro | J. A. H. Morata | S. Cebrián | I. Irastorza | D. Calvet | A. Cervera | F. Druillole | A. Coguie | J. Mols | V. Gehman | C. Sofka | J. White | I. Liubarsky | R. Esteve | R. Gutiérrez | D. Lorca | J. Martín-Albo | M. Nebot-Guinot | J. Castel | C. Conde | T. Dafni | T. Dias | M. Egorov | P. Evtoukhovitch | L. Fernandes | A. Ferreira | E. Ferrer-Ribas | E. Freitas | A. Gil | F. Iguaz | J. Lopes | A. Moiseenko | F. Monrabal | C. Monteiro | F. Mora | J. Vidal | C. Oliveira | J. Renner | L. Ripoll | F. Santos | J. Santos | L. Segui | L. Serra | D. Shuman | M. Sorel | J. Toledo | J. Torrent | J. Veloso | N. Yahlali | V. Álvarez | J. Santos | J. Aparicio | H. Gómez | G. Luzón | A. Tomás | I. Giomataris | J. Gracia | R. C. Webb | D. Shuman | J. Castel | A. Cervera | P. Evtoukhovitch | A. L. Ferreira | A. Laing | T. Miller | A. Moiseenko | M. Nebot-Guinot | D. Nygren | R. Palma | J. Renner | F. P. Santos | L. Segui | M. Sorel | J. A. Villar | J. A. Garcia | G. Luzon | J. A. Garćıa | A. Marı́ | S. Cebrian | C.A.N. Conde | T. Miller | The NEXT collaboration V. Alvarez | T.H.V.T. Dias | J. Diaz | A. Mari | C.A.B. Oliveira | J. Perez | J. L. Perez Aparicio | A. Tomas | D. Vazquez | J. P. Mols | P. Pons | E. Ruiz | J. Gracia | J. Villar | D. González-Díaz | F. Aznar | E. Ruiz | G. Martínez-Lema | A. Simón | S. Cárcel | J. Rodŕıguez | C. Oliveira | F. Borges | J. Perez | D. Vázquez | M. Jinete | J. Díaz | T. L. C. W. Alvarez | A. Rodriguez | J. Gómez-Cadenas | A. Mart́ınez | P. Pons | A. Rodriguez | F. Santos | R. Webb | J. Diaz | J. Lopes | J. Vidal

[1]  T. Miyachi,et al.  Ratio of Transverse Diffusion Coefficient to Mobility of Electrons in High-Pressure Xenon , 2004 .

[2]  A. Wagner,et al.  Electron attachment to oxygen, water, and methanol, in various drift chamber gas mixtures , 1988 .

[3]  A Monte Carlo study of the fluctuations in Xe electroluminescence yield: pure Xe vs Xe doped with CH4 or CF4 and planar vs cylindrical geometries , 2011, 1107.5567.

[4]  S. Kubota,et al.  Emission spectra from ArXe, ArKr, ArN2, ArCH4, ArCO2 and XeN2 gas scintillation proportional counters , 1983 .

[5]  B. Ramsey,et al.  STUDIES OF LIGHT AND CHARGE PRODUCED BY ALPHA-PARTICLES IN HIGH-PRESSURE XENON , 1999 .

[6]  A. Bolozdynya,et al.  Noble Gas Detectors , 2006 .

[7]  D. Calvet,et al.  AFTER, an ASIC for the Readout of the Large T2K Time Projection Chambers , 2008, IEEE Transactions on Nuclear Science.

[8]  L. M. Moutinho,et al.  NEXT-100 Technical Design Report (TDR). Executive summary , 2012, 1202.0721.

[9]  Hunter,et al.  Low-energy electron drift and scattering in krypton and xenon. , 1988, Physical review. A, General physics.

[10]  N. Yahlali,et al.  Near-intrinsic energy resolution for 30–662 keV gamma rays in a high pressure xenon electroluminescent TPC , 2012, 1211.4474.

[11]  D. Nygren Can the "intrinsic" energy resolution in xenon be surpassed? , 2011 .

[12]  Prahlad C. Agrawal,et al.  Xenon-based Penning mixtures for proportional counters , 1989 .

[13]  L. Christophorou,et al.  SCATTERING OF THERMAL ELECTRONS BY POLAR MOLECULES. , 1969 .

[14]  P. Ferrario,et al.  Sense and sensitivity of double beta decay experiments , 2010, 1010.5112.

[15]  T. Koizumi,et al.  Momentum transfer cross sections for low-energy electrons in krypton and xenon from characteristic energies , 1986 .

[17]  D. C. Herrera,et al.  Micromegas-TPC operation at high pressure in Xenon-trimethylamine mixtures , 2012, 1210.3287.

[18]  N. Yahlali,et al.  Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment , 2012, 1211.4838.

[19]  J. L. Pérez-Aparicio,et al.  The NEXT-100 experiment for neutrinoless double beta decay searches (Conceptual Design Report) , 2011, 1106.3630.

[20]  H. Shimamori,et al.  Mechanism of thermal electron attachment to O2: Isotope effect studies with 18O2 in rare gases and some hydrocarbons , 1984 .

[21]  D. González-Díaz,et al.  The NEXT experiment. Towards phase I , 2013, 1310.7054.

[22]  N. Hasebe,et al.  Longitudinal and transverse diffusion of electrons in high-pressure xenon , 2013 .

[23]  R. Veenhof,et al.  Penning transfer in argon-based gas mixtures , 2010 .

[24]  L. M. Moutinho,et al.  Ionization and scintillation response of high-pressure xenon gas to alpha particles , 2012, 1211.4508.

[25]  N. Yahlali,et al.  Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array , 2013, 1306.0471.

[26]  N. Hasebe,et al.  Electron Mobility and Longitudinal Diffusion Coefficient in High-Density Gaseous Xenon , 2012 .

[27]  D. Lorca,et al.  Design and characterization of the SiPM tracking system of the NEXT-100 demonstrator , 2012 .

[28]  L. M. Moutinho,et al.  Description and commissioning of NEXT-MM prototype: first results from operation in a Xenon-Trimethylamine gas mixture , 2013, 1311.3242.

[29]  L. M. Moutinho,et al.  Design and characterization of the SiPM tracking system of NEXT-DEMO, a demonstrator prototype of the NEXT-100 experiment , 2012, 1206.6199.

[30]  K. Gabathuler,et al.  Search for ββ decay in 136Xe: new results from the Gotthard experiment , 1998 .

[31]  T. Geralis,et al.  Development and performance of Microbulk Micromegas detectors , 2010 .