Pure pairs. I. Trees and linear anticomplete pairs
暂无分享,去创建一个
Maria Chudnovsky | Paul Seymour | Sophie Spirkl | Alex Scott | A. Scott | P. Seymour | M. Chudnovsky | S. Spirkl
[1] Dvir Falik,et al. Excluding Hooks and their Complements , 2015, Electron. J. Comb..
[2] Nicolas Bousquet,et al. The Erdős-Hajnal conjecture for paths and antipaths , 2015, J. Comb. Theory, Ser. B.
[3] Paul Erdös,et al. Ramsey-type theorems , 1989, Discret. Appl. Math..
[4] P. Erdös,et al. Graph Theory and Probability , 1959 .
[5] Marthe Bonamy,et al. The Erdös-Hajnal Conjecture for Long Holes and Antiholes , 2014, SIAM J. Discret. Math..
[6] Vojtech Rödl. On universality of graphs with uniformly distributed edges , 1986, Discret. Math..
[7] A. Hajnal. On spanned subgraphs of graphs , 1977 .
[8] A. Scott,et al. Pure pairs. IV. Trees in bipartite graphs , 2020, 2009.09426.
[9] Maria Chudnovsky,et al. Pure pairs. II. Sparse graphs without linear anticomplete pairs , 2020 .
[10] Noga Alon,et al. Crossing patterns of semi-algebraic sets , 2005, J. Comb. Theory, Ser. A.
[11] Paul D. Seymour,et al. Caterpillars in Erdős-Hajnal , 2019, J. Comb. Theory, Ser. B.
[12] Paul Seymour,et al. Pure Pairs VI: Excluding an Ordered Tree , 2020, SIAM J. Discret. Math..
[14] J. Pach,et al. Erdős-Hajnal-type Results on Intersection Patterns of Geometric Objects , 2008 .
[15] A. Scott,et al. Pure pairs. V. Excluding some long subdivision , 2021, 2105.03956.