On the history of multivariate polynomial interpolation

[1]  C. Jacobi Theoremata nova algebraica circa systema duarum aequationum, inter duas variabiles propositarum. , 1835 .

[2]  Otto Biermann,et al.  Über näherungsweise Cubaturen , 1903 .

[3]  Vorlesungen über mathematische Näherungsmethoden , 1906, Nature.

[4]  S. Narumi Review@@@Some Formulas in the Theory of Interpolation of Many Independent Variables. , 1923 .

[5]  On the Construction of Tables and on Interpolation. , 1921 .

[6]  Ludwig Neder Interpolationsformeln für Funktionen mehrerer Argumente , 1926 .

[7]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[8]  Herbert E. Salzer Note on interpolation for a function of several variables , 1945 .

[9]  Tables of Coefficients for Interpolating in Functions of the Variables , 1947 .

[10]  J. Radon,et al.  Zur mechanischen Kubatur , 1948 .

[11]  Arthur Sard Remainders: Functions of several variables , 1951 .

[12]  Arthur Sard Remainders as integrals of partial derivatives , 1952 .

[13]  Note on Multivariate Interpolation for Unequally Spaced Arguments, with an Application to Double Summation , 1957 .

[14]  Rudolph E. Langer,et al.  On Numerical Approximation , 1959 .

[15]  W. E. Milne,et al.  INTERPOLATION IN SEVERAL VARIABLES , 1960 .

[16]  Tables for Bivariate Osculatory Interpolation Over a Cartesian Grid , 1960 .

[17]  Henry C. Thacher,et al.  DERIVATION OF INTERPOLATION FORMULAS IN SEVERAL INDEPENDENT VARIABLES * , 1960 .

[18]  A. C. Ahlin,et al.  A bivariate generalization of Hermite’s interpolation formula , 1964 .

[19]  H. E. Salzer,et al.  Divided differences for functions of two variables for irregularly spaced arguments , 1964 .

[20]  D. D. Stancu The Remainder of Certain Linear Approximation Formulas in Two Variables , 1964 .

[21]  M. Newman,et al.  Interpolation and approximation , 1965 .

[22]  J. Miller Numerical Analysis , 1966, Nature.

[23]  Christian Coatmélec Approximation et interpolation des fonctions différentiables de plusieurs variables , 1966 .

[24]  G. Lorentz Approximation of Functions , 1966 .

[25]  H. Keller,et al.  Analysis of Numerical Methods , 1967 .

[26]  R. Varga,et al.  Piecewise Hermite interpolation in one and two variables with applications to partial differential equations , 1968 .

[27]  Miloš Zlámal,et al.  On the finite element method , 1968 .

[28]  R. Guenther,et al.  Some Observations on Interpolation in Higher Dimensions , 1970 .

[29]  G. Glaeser,et al.  L’interpolation des Fonctions Différentiables de Plusteurs Variables , 1971 .

[30]  Herbert E. Salzer Formulas for Bivariate Hyperosculatory Interpolation , 1971 .

[31]  Philippe G. Ciarlet,et al.  Multipoint Taylor formulas and applications to the finite element method , 1971 .

[32]  R. A. Nicolaides,et al.  On a Class of Finite Elements Generated by Lagrange Interpolation , 1972 .

[33]  P. G. Ciarlet,et al.  General lagrange and hermite interpolation in Rn with applications to finite element methods , 1972 .

[34]  H. Schönheinz G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .

[35]  Herman Heine Goldstine,et al.  A History of Numerical Analysis from the 16th through the 19th Century. , 1976 .

[36]  J. Z. Zhu,et al.  The finite element method , 1977 .

[37]  Philippe G. Ciarlet,et al.  The Finite Element Method for Elliptic Problems. , 1981 .

[38]  C. Hoffmann Algebraic curves , 1988 .

[39]  Multivariate Polynomial Interpolation , 1990 .

[40]  T. Sauer,et al.  On multivariate Lagrange interpolation , 1995 .

[41]  Sankatha Prasad Singh,et al.  Approximation Theory, Wavelets and Applications , 1995 .

[42]  Yuan Xu,et al.  A Case Study in Multivariate Lagrange Interpolation , 1995 .

[43]  Tomas Sauer,et al.  Polynomial interpolation in several variables , 2000, Adv. Comput. Math..

[44]  R. A. Lorentz,et al.  Multivariate Hermite interpolation by algebraic polynomials: a survey , 2000 .

[45]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.