On the history of multivariate polynomial interpolation
暂无分享,去创建一个
[1] C. Jacobi. Theoremata nova algebraica circa systema duarum aequationum, inter duas variabiles propositarum. , 1835 .
[2] Otto Biermann,et al. Über näherungsweise Cubaturen , 1903 .
[3] Vorlesungen über mathematische Näherungsmethoden , 1906, Nature.
[4] S. Narumi. Review@@@Some Formulas in the Theory of Interpolation of Many Independent Variables. , 1923 .
[5] On the Construction of Tables and on Interpolation. , 1921 .
[6] Ludwig Neder. Interpolationsformeln für Funktionen mehrerer Argumente , 1926 .
[7] R. Courant. Variational methods for the solution of problems of equilibrium and vibrations , 1943 .
[8] Herbert E. Salzer. Note on interpolation for a function of several variables , 1945 .
[9] Tables of Coefficients for Interpolating in Functions of the Variables , 1947 .
[10] J. Radon,et al. Zur mechanischen Kubatur , 1948 .
[11] Arthur Sard. Remainders: Functions of several variables , 1951 .
[12] Arthur Sard. Remainders as integrals of partial derivatives , 1952 .
[13] Note on Multivariate Interpolation for Unequally Spaced Arguments, with an Application to Double Summation , 1957 .
[14] Rudolph E. Langer,et al. On Numerical Approximation , 1959 .
[15] W. E. Milne,et al. INTERPOLATION IN SEVERAL VARIABLES , 1960 .
[16] Tables for Bivariate Osculatory Interpolation Over a Cartesian Grid , 1960 .
[17] Henry C. Thacher,et al. DERIVATION OF INTERPOLATION FORMULAS IN SEVERAL INDEPENDENT VARIABLES * , 1960 .
[18] A. C. Ahlin,et al. A bivariate generalization of Hermite’s interpolation formula , 1964 .
[19] H. E. Salzer,et al. Divided differences for functions of two variables for irregularly spaced arguments , 1964 .
[20] D. D. Stancu. The Remainder of Certain Linear Approximation Formulas in Two Variables , 1964 .
[21] M. Newman,et al. Interpolation and approximation , 1965 .
[22] J. Miller. Numerical Analysis , 1966, Nature.
[23] Christian Coatmélec. Approximation et interpolation des fonctions différentiables de plusieurs variables , 1966 .
[24] G. Lorentz. Approximation of Functions , 1966 .
[25] H. Keller,et al. Analysis of Numerical Methods , 1967 .
[26] R. Varga,et al. Piecewise Hermite interpolation in one and two variables with applications to partial differential equations , 1968 .
[27] Miloš Zlámal,et al. On the finite element method , 1968 .
[28] R. Guenther,et al. Some Observations on Interpolation in Higher Dimensions , 1970 .
[29] G. Glaeser,et al. L’interpolation des Fonctions Différentiables de Plusteurs Variables , 1971 .
[30] Herbert E. Salzer. Formulas for Bivariate Hyperosculatory Interpolation , 1971 .
[31] Philippe G. Ciarlet,et al. Multipoint Taylor formulas and applications to the finite element method , 1971 .
[32] R. A. Nicolaides,et al. On a Class of Finite Elements Generated by Lagrange Interpolation , 1972 .
[33] P. G. Ciarlet,et al. General lagrange and hermite interpolation in Rn with applications to finite element methods , 1972 .
[34] H. Schönheinz. G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .
[35] Herman Heine Goldstine,et al. A History of Numerical Analysis from the 16th through the 19th Century. , 1976 .
[36] J. Z. Zhu,et al. The finite element method , 1977 .
[37] Philippe G. Ciarlet,et al. The Finite Element Method for Elliptic Problems. , 1981 .
[38] C. Hoffmann. Algebraic curves , 1988 .
[39] Multivariate Polynomial Interpolation , 1990 .
[40] T. Sauer,et al. On multivariate Lagrange interpolation , 1995 .
[41] Sankatha Prasad Singh,et al. Approximation Theory, Wavelets and Applications , 1995 .
[42] Yuan Xu,et al. A Case Study in Multivariate Lagrange Interpolation , 1995 .
[43] Tomas Sauer,et al. Polynomial interpolation in several variables , 2000, Adv. Comput. Math..
[44] R. A. Lorentz,et al. Multivariate Hermite interpolation by algebraic polynomials: a survey , 2000 .
[45] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.