The Infrared Medium-deep Survey. VIII. Quasar Luminosity Function at z ∼ 5

Faint z ∼ 5 quasars with M1450 ∼ −23 mag are known to be potentially important contributors to the ultraviolet ionizing background in the postreionization era. However, their number density has not been well determined, making it difficult to assess their role in the early ionization of the intergalactic medium (IGM). In this work, we present the updated results of our z ∼ 5 quasar survey using the Infrared Medium-deep Survey (IMS), a near-infrared imaging survey covering an area of 85 deg2. From our spectroscopic observations with the Gemini Multi-Object Spectrograph on the Gemini-South 8 m telescope, we discovered eight new quasars at z ∼ 5 with −26.1 ≤ M1450 ≤ −23.3. Combining our IMS faint quasars (M1450 > −27 mag) with the brighter Sloan Digital Sky Survey quasars (M1450 < −27 mag), we derive the z ∼ 5 quasar luminosity function (QLF) without any fixed parameters down to the magnitude limit of M1450 = −23 mag. We find that the faint-end slope of the QLF is very flat ( ), with a characteristic luminosity of mag. The number density of z ∼ 5 quasars from the QLF gives an ionizing emissivity at 912 Å of ϵ912 = (3.7–7.1) × 1023 erg s−1 Hz−1 Mpc−3 and an ionizing photon density of Mpc−3 s−1. These results imply that quasars are responsible for only 10%–20% (up to 50% even in the extreme case) of the photons required to completely ionize the IGM at z ∼ 5, disfavoring the idea that quasars alone could have ionized the IGM at z ∼ 5.

[1]  Linhua Jiang,et al.  Pōniuā‘ena: A Luminous z = 7.5 Quasar Hosting a 1.5 Billion Solar Mass Black Hole , 2020, The Astrophysical Journal.

[2]  A. Grazian,et al.  On the AGN Nature of Two UV-bright Sources at zspec ∼ 5.5 in the CANDELS Fields: An Update on the AGN Space Density at M1450 ∼ −22.5 , 2020, The Astrophysical Journal.

[3]  M. Im,et al.  The Infrared Medium-deep Survey. VII. Faint Quasars at z ∼ 5 in the ELAIS-N1 Field , 2020, The Astrophysical Journal.

[4]  H. Trac,et al.  Hydrodynamic Response of the Intergalactic Medium to Reionization , 2020, The Astrophysical Journal.

[5]  G. Richards,et al.  The bolometric quasar luminosity function at z = 0–7 , 2020, Monthly Notices of the Royal Astronomical Society.

[6]  M. Volonteri,et al.  Reionization with galaxies and active galactic nuclei , 2020, Monthly Notices of the Royal Astronomical Society.

[7]  A. Fontana,et al.  Space Densities and Emissivities of Active Galactic Nuclei at z > 4 , 2019, The Astrophysical Journal.

[8]  R. Naidu,et al.  Model-independent constraints on the hydrogen-ionizing emissivity at z > 6 , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  Philip J. Tait,et al.  Discovery of the First Low-luminosity Quasar at z > 7 , 2019, The Astrophysical Journal.

[10]  Xiaohui Fan,et al.  The Extremely Luminous Quasar Survey in the Sloan Digital Sky Survey Footprint. III. The South Galactic Cap Sample and the Quasar Luminosity Function at Cosmic Noon , 2018, The Astrophysical Journal.

[11]  Xiaohui Fan,et al.  Exploring Reionization-era Quasars. IV. Discovery of Six New z ≳ 6.5 Quasars with DES, VHS, and unWISE Photometry , 2018, The Astronomical Journal.

[12]  Hye-In Lee,et al.  The Infrared Medium-deep Survey. VI. Discovery of Faint Quasars at z ∼ 5 with a Medium-band-based Approach , 2018, The Astrophysical Journal.

[13]  A. Grazian,et al.  A High Space Density of L* Active Galactic Nuclei at z ∼ 4 in the COSMOS Field , 2018, The Astrophysical Journal.

[14]  J. Gunn,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at z = 6 , 2018, The Astrophysical Journal.

[15]  Xiaohui Fan,et al.  Filling in the Quasar Redshift Gap at z ∼ 5.5. II. A Complete Survey of Luminous Quasars in the Post-reionization Universe , 2018, The Astrophysical Journal.

[16]  A. Myers,et al.  Exploring Reionization-era Quasars. III. Discovery of 16 Quasars at 6.4 ≲ z ≲ 6.9 with DESI Legacy Imaging Surveys and the UKIRT Hemisphere Survey and Quasar Luminosity Function at z ∼ 6.7 , 2018, The Astrophysical Journal.

[17]  Xiaohui Fan,et al.  The Discovery of a Luminous Broad Absorption Line Quasar at a Redshift of 7.02 , 2018, The Astrophysical Journal.

[18]  J. Hennawi,et al.  Evolution of the AGN UV luminosity function from redshift 7.5 , 2018, Monthly Notices of the Royal Astronomical Society.

[19]  Xiaohui Fan,et al.  The Extremely Luminous Quasar Survey in the Sloan Digital Sky Survey Footprint. II. The North Galactic Cap Sample , 2018, The Astrophysical Journal.

[20]  H. Rix,et al.  Quantitative Constraints on the Reionization History from the IGM Damping Wing Signature in Two Quasars at z > 7 , 2018, The Astrophysical Journal.

[21]  M. Im,et al.  The Infrared Medium-deep Survey. IV. The Low Eddington Ratio of A Faint Quasar at z ∼ 6: Not Every Supermassive Black Hole is Growing Fast in the Early Universe , 2018, 1802.02782.

[22]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[23]  H. Rix,et al.  An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 , 2017, Nature.

[24]  Z. Cai,et al.  The Faint End of the z = 5 Quasar Luminosity Function from the CFHTLS , 2017, 1710.09390.

[25]  P. Madau Cosmic Reionization after Planck and before JWST: An Analytic Approach , 2017, 1710.07636.

[26]  H. Rix,et al.  Physical Properties of 15 Quasars at z ≳ 6.5 , 2017, 1710.01251.

[27]  D. Schneider,et al.  High-redshift AGN in the Chandra Deep Fields : The obscured fraction and space density of the sub-L * population , 2017, 1709.07892.

[28]  T. Treu,et al.  The Universe Is Reionizing at z ∼ 7: Bayesian Inference of the IGM Neutral Fraction Using Lyα Emission from Galaxies , 2017, 1709.05356.

[29]  Masayuki Tanaka,et al.  Minor Contribution of Quasars to Ionizing Photon Budget at z ∼ 6: Update on Quasar Luminosity Function at the Faint End with Subaru/Suprime-Cam , 2017, 1709.04413.

[30]  L. Pentericci,et al.  The contribution of faint AGNs to the ionizing background at z~4 , 2017, 1802.01953.

[31]  M. Im,et al.  The Infrared Medium-deep Survey. III. Survey of Luminous Quasars at 4.7 ≤ z ≤ 5.4 , 2017, 1706.08454.

[32]  J. Dunlop,et al.  No evidence for a significant AGN contribution to cosmic hydrogen reionization , 2017, 1704.07750.

[33]  J. Silverman,et al.  The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey , 2017, 1704.05996.

[34]  Philip J. Tait,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 ≤ z ≤ 7.0 , 2019, The Astrophysical Journal.

[35]  Adam D. Myers,et al.  First Discoveries of z > 6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey , 2017, 1703.07490.

[36]  Linhua Jiang,et al.  Discovery of 16 New z ∼ 5.5 Quasars: Filling in the Redshift Gap of Quasar Color Selection , 2017, 1703.03526.

[37]  J. Prochaska,et al.  Implications of z ∼ 6 Quasar Proximity Zones for the Epoch of Reionization and Quasar Lifetimes , 2017, 1703.02539.

[38]  Sergey E. Koposov,et al.  Eight new luminous z >= 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations , 2017, 1701.04852.

[39]  F. Davies,et al.  Large fluctuations in the high-redshift metagalactic ionizing background , 2016, 1611.02711.

[40]  Xiaohui Fan,et al.  THE FINAL SDSS HIGH-REDSHIFT QUASAR SAMPLE OF 52 QUASARS AT z > 5.7 , 2016, 1610.05369.

[41]  F. Shankar,et al.  Constraining the UV emissivity of AGN throughout cosmic time via X-ray surveys , 2016, 1610.01638.

[42]  H. Rix,et al.  THE PAN-STARRS1 DISTANT z > 5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE , 2016, 1608.03279.

[43]  Xiaohui Fan,et al.  A SURVEY OF LUMINOUS HIGH-REDSHIFT QUASARS WITH SDSS AND WISE. II. THE BRIGHT END OF THE QUASAR LUMINOSITY FUNCTION AT z ∼ 5 , 2016, The Astrophysical Journal.

[44]  Hye-In Lee,et al.  Development of SED Camera for Quasars in Early Universe (SQUEAN) , 2016, 1605.09263.

[45]  C. A. Oxborrow,et al.  Planck intermediate results - XLVII. Planck constraints on reionization history , 2016, 1605.03507.

[46]  Philip J. Tait,et al.  SUBARU HIGH-z EXPLORATION OF LOW-LUMINOSITY QUASARS (SHELLQs). I. DISCOVERY OF 15 QUASARS AND BRIGHT GALAXIES AT 5.7 < z < 6.9 , 2016, 1603.02281.

[47]  Z. Cai,et al.  A SURVEY OF LUMINOUS HIGH-REDSHIFT QUASARS WITH SDSS AND WISE. I. TARGET SELECTION AND OPTICAL SPECTROSCOPY , 2016, The Astrophysical Journal.

[48]  Hye-In Lee,et al.  The Infrared Medium-Deep Survey. V. A New Selection Strategy for Quasars at z > 5 based on Medium-Band Observation with SQUEAN , 2016, 1602.02236.

[49]  M. Im,et al.  DISCOVERY OF A FAINT QUASAR AT z ∼ 6 AND IMPLICATIONS FOR COSMIC REIONIZATION , 2015, 1511.01585.

[50]  L. Christensen,et al.  An X-shooter composite of bright 1 < z < 2 quasars from UV to infrared , 2015, 1510.08058.

[51]  R. McMahon,et al.  First discoveries of z ̃ 6 quasars with the Kilo-Degree Survey and VISTA Kilo-Degree Infrared Galaxy survey , 2015, 1507.00726.

[52]  Hye-In Lee,et al.  A NEW AUTO-GUIDING SYSTEM FOR CQUEAN , 2015 .

[53]  J. Prochaska,et al.  The first ultraviolet quasar-stacked spectrum at z ≃ 2.4 from WFC3 , 2015, 1503.02075.

[54]  A. Coil,et al.  The evolution of the X-ray luminosity functions of unabsorbed and absorbed AGNs out to z ~ 5 , 2015, 1503.01120.

[55]  Xiaohui Fan,et al.  An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30 , 2015, Nature.

[56]  L. Pentericci,et al.  Faint AGNs at z > 4 in the CANDELS GOODS-S field: looking for contributors to the reionization of the Universe , 2015, 1502.02562.

[57]  H. Rix,et al.  THE IDENTIFICATION OF z-DROPOUTS IN PAN-STARRS1: THREE QUASARS AT 6.5< z< 6.7 , 2015, 1502.01927.

[58]  I. McGreer,et al.  Model-independent evidence in favour of an end to reionization by z ≈ 6 , 2014, 1411.5375.

[59]  M. Im,et al.  THE SUBARU HIGH-z QUASAR SURVEY: DISCOVERY OF FAINT z ∼ 6 QUASARS , 2014, 1410.7401.

[60]  J. Michael Shull,et al.  HST-COS OBSERVATIONS OF AGNs. II. EXTENDED SURVEY OF ULTRAVIOLET COMPOSITE SPECTRA FROM 159 ACTIVE GALACTIC NUCLEI , 2014, 1408.5900.

[61]  B. Ciardi,et al.  Clumping factors of H II, He II and He III , 2014, 1407.5996.

[62]  Queen Mary,et al.  DISCOVERY OF THREE z > 6.5 QUASARS IN THE VISTA KILO-DEGREE INFRARED GALAXY (VIKING) SURVEY , 2013, 1311.3666.

[63]  H. Rix,et al.  DISCOVERY OF EIGHT z ∼ 6 QUASARS FROM Pan-STARRS1 , 2014, 1405.3986.

[64]  J. Bolton,et al.  New Measurements of the Ionizing Ultraviolet Background over 2 < z < 5 and Implications for Hydrogen Reionization , 2013, 1307.2259.

[65]  A. Myers,et al.  THE z = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82 , 2012, 1212.4493.

[66]  Britton D. Smith,et al.  CRITICAL STAR FORMATION RATES FOR REIONIZATION: FULL REIONIZATION OCCURS AT REDSHIFT z ≈ 7 , 2012 .

[67]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[68]  G. Richards,et al.  A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2011, 2209.03987.

[69]  Piero Madau,et al.  RADIATIVE TRANSFER IN A CLUMPY UNIVERSE. IV. NEW SYNTHESIS MODELS OF THE COSMIC UV/X-RAY BACKGROUND , 2011, 1105.2039.

[70]  D. Kelson,et al.  IMACS: The Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade , 2011 .

[71]  J. Bolton,et al.  Near-zone sizes and the rest-frame extreme ultraviolet spectral index of the highest redshift quasars , 2010, 1008.1107.

[72]  G. Richards,et al.  A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2010, 1006.5178.

[73]  S. Djorgovski,et al.  THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z ∼ 4: IMPLICATIONS FOR IONIZATION OF THE INTERGALACTIC MEDIUM AND COSMIC DOWNSIZING , 2009, 0912.2799.

[74]  R. McLure,et al.  THE CANADA–FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6 , 2009, 0912.0281.

[75]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[76]  Paul S. Smith,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 04/20/08 HIGH-REDSHIFT SDSS QUASARS WITH WEAK EMISSION LINES , 2022 .

[77]  O. Almaini,et al.  The UKIRT wide-field camera , 2007 .

[78]  J. Bolton,et al.  The observed ionization rate of the intergalactic medium and the ionizing emissivity at z≥ 5: evidence for a photon-starved and extended epoch of reionization , 2007, astro-ph/0703306.

[79]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[80]  Robert H. Becker,et al.  Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.

[81]  A. Meiksin Constraints on the ionization sources of the high‐redshift intergalactic medium , 2004, astro-ph/0409256.

[82]  I. Hook,et al.  The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes , 2004 .

[83]  J. Shields,et al.  Continuum and Emission-Line Strength Relations for a Large Active Galactic Nuclei Sample , 2002, astro-ph/0208348.

[84]  A. F. Davidsen,et al.  The Rest-Frame Extreme-Ultraviolet Spectral Properties of Quasi-stellar Objects , 2001, astro-ph/0109531.

[85]  V. Narayanan,et al.  A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6 , 2001, astro-ph/0108063.

[86]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[87]  R. Nichol,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data , 1999, astro-ph/0103228.

[88]  Martin J. Rees,et al.  Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources , 1998, astro-ph/9809058.

[89]  M. Im,et al.  A Measurement of the Cosmological Constant Using Elliptical Galaxies as Strong Gravitational Lenses , 1996, astro-ph/9611105.

[90]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[91]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[92]  David A. Hanes,et al.  CCD photometry of the globular cluster systems in NGC 4494 and NGC 4565 , 1995 .

[93]  B. Wilkes,et al.  The Soft X-Ray Properties of a Complete Sample of Optically Selected Quasars. II. Final Results , 1994, astro-ph/9609164.

[94]  Bradley Efron,et al.  A simple test of independence for truncated data with applications to redshift surveys , 1992 .

[95]  G. Zamorani,et al.  Analysis of complete quasar samples to obtain parameters of luminosity and evolution functions , 1983 .

[96]  J. N. Bahcall,et al.  On the simultaneous analysis of several complete samples - The V/Vmax and Ve/Va variables, with applications to quasars , 1980 .

[97]  S. Bowyer,et al.  Parameter estimation in X-ray astronomy , 1976 .

[98]  D. Lynden-Bell,et al.  A Method of Allowing for Known Observational Selection in Small Samples Applied to 3CR Quasars , 1971 .

[99]  A. Szalay,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. IV. Luminosity Function from the Fall Equatorial Stripe Sample , 2001 .