Loss of Cardiac microRNA-Mediated Regulation Leads to Dilated Cardiomyopathy and Heart Failure

Rationale: Heart failure is a deadly and devastating disease that places immense costs on an aging society. To develop therapies aimed at rescuing the failing heart, it is important to understand the molecular mechanisms underlying cardiomyocyte structure and function. Objective: microRNAs are important regulators of gene expression, and we sought to define the global contributions made by microRNAs toward maintaining cardiomyocyte integrity. Methods and Results: First, we performed deep sequencing analysis to catalog the miRNA population in the adult heart. Second, we genetically deleted, in cardiac myocytes, an essential component of the machinery that is required to generate miRNAs. Deep sequencing of miRNAs from the heart revealed the enrichment of a small number of microRNAs with one, miR-1, accounting for 40% of all microRNAs. Cardiomyocyte-specific deletion of dgcr8, a gene required for microRNA biogenesis, revealed a fully penetrant phenotype that begins with left ventricular malfunction progressing to a dilated cardiomyopathy and premature lethality. Conclusions: These observations reveal a critical role for microRNAs in maintaining cardiac function in mature cardiomyocytes and raise the possibility that only a handful of microRNAs may ultimately be responsible for the dramatic cardiac phenotype seen in the absence of dgcr8.

[1]  G. Mirshekari,et al.  Processing , 2020, Bring Now the Angels.

[2]  C. Sander,et al.  DGCR8-dependent microRNA biogenesis is essential for skin development , 2009, Proceedings of the National Academy of Sciences.

[3]  E. Olson,et al.  microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. , 2008, Genes & development.

[4]  David P. Bartel,et al.  Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals , 2008, Nature.

[5]  C. Joo,et al.  Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. , 2008, Molecular cell.

[6]  Robert Blelloch,et al.  Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. , 2008, Genes & development.

[7]  Y. Pinto,et al.  Conditional Dicer Gene Deletion in the Postnatal Myocardium Provokes Spontaneous Cardiac Remodeling , 2008, Circulation.

[8]  Robert Blelloch,et al.  Embryonic Stem Cell Specific MicroRNAs Regulate the G1/S Transition and Promote Rapid Proliferation , 2008, Nature Genetics.

[9]  Jeffrey E. Thatcher,et al.  Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis , 2008, Proceedings of the National Academy of Sciences.

[10]  John McAnally,et al.  The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. , 2008, Developmental cell.

[11]  Ru-Fang Yeh,et al.  miR-126 regulates angiogenic signaling and vascular integrity. , 2008, Developmental cell.

[12]  J. M. Thomson,et al.  Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. , 2008, RNA.

[13]  L. Johnston,et al.  Temporal Regulation of Metamorphic Processes in Drosophila by the let-7 and miR-125 Heterochronic MicroRNAs , 2008, Current Biology.

[14]  V. Ambros,et al.  Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. , 2008, Genes & development.

[15]  U. A. Ørom,et al.  MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. , 2008, Molecular cell.

[16]  Michael T. McManus,et al.  Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration , 2008, Proceedings of the National Academy of Sciences.

[17]  G. Daley,et al.  Selective Blockade of MicroRNA Processing by Lin28 , 2008, Science.

[18]  N. Rajewsky,et al.  Dicer Ablation Affects Antibody Diversity and Cell Survival in the B Lymphocyte Lineage , 2008, Cell.

[19]  A. McMahon,et al.  Dicer-dependent pathways regulate chondrocyte proliferation and differentiation , 2008, Proceedings of the National Academy of Sciences.

[20]  Michael D. Schneider,et al.  Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure , 2008, Proceedings of the National Academy of Sciences.

[21]  E. Olson,et al.  An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133 , 2007, Proceedings of the National Academy of Sciences.

[22]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[23]  Michael T. McManus,et al.  Essential role for Dicer during skeletal muscle development. , 2007, Developmental biology.

[24]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[25]  Sek Won Kong,et al.  Altered microRNA expression in human heart disease. , 2007, Physiological genomics.

[26]  E. Lai,et al.  The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila , 2007, Cell.

[27]  P. Greengard,et al.  Cerebellar neurodegeneration in the absence of microRNAs , 2007, The Journal of experimental medicine.

[28]  D. Bartel,et al.  Intronic microRNA precursors that bypass Drosha processing , 2007, Nature.

[29]  N. Rajewsky,et al.  Regulation of the Germinal Center Response by MicroRNA-155 , 2007, Science.

[30]  Xiaoxia Qi,et al.  Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA , 2007, Science.

[31]  Michael T. McManus,et al.  Dysregulation of Cardiogenesis, Cardiac Conduction, and Cell Cycle in Mice Lacking miRNA-1-2 , 2007, Cell.

[32]  Rudolf Jaenisch,et al.  DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal , 2007, Nature Genetics.

[33]  Sridhar Hannenhalli,et al.  Transcriptional Genomics Associates FOX Transcription Factors With Human Heart Failure , 2006, Circulation.

[34]  Harvey F Lodish,et al.  Myogenic factors that regulate expression of muscle-specific microRNAs. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[35]  F. Dietrich,et al.  Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs , 2006, Nature Genetics.

[36]  Jian-Fu Chen,et al.  The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation , 2006, Nature Genetics.

[37]  Michael T. McManus,et al.  The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[39]  J. Rinn,et al.  Sexual dimorphism in mammalian gene expression. , 2005, Trends in genetics : TIG.

[40]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[41]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[42]  M. Rao Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. , 2004, Developmental biology.

[43]  G. Hannon,et al.  Processing of primary microRNAs by the Microprocessor complex , 2004, Nature.

[44]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[45]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[46]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[47]  Gordon K Smyth,et al.  Statistical Applications in Genetics and Molecular Biology Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2011 .

[48]  C. Lima,et al.  Structure and mechanism of RNA ligase. , 2004, Structure.

[49]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[50]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[51]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[52]  Terry Speed,et al.  Normalization of cDNA microarray data. , 2003, Methods.

[53]  S. Elledge,et al.  Dicer is essential for mouse development , 2003, Nature Genetics.

[54]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[55]  P. Waterhouse,et al.  Posttranscriptional Gene Silencing Is Not Compromised in the Arabidopsis CARPEL FACTORY (DICER-LIKE1) Mutant, a Homolog of Dicer-1 from Drosophila , 2003, Current Biology.

[56]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[57]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[58]  J. Walker,et al.  Thyroid hormone regulates slow skeletal troponin I gene inactivation in cardiac troponin I null mouse hearts. , 2000, Journal of molecular and cellular cardiology.

[59]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[60]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[61]  C. Kahn,et al.  A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. , 1998, Molecular cell.

[62]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[63]  A. Hata,et al.  SMAD proteins control DROSHA-mediated microRNA maturation , 2008, Nature.

[64]  J. Jin,et al.  Co-expression of skeletal and cardiac troponin T decreases mouse cardiac function. , 2008, American journal of physiology. Cell physiology.

[65]  F. Cremisi,et al.  Dicer inactivation causes heterochronic retinogenesis in Xenopus laevis. , 2008, The International journal of developmental biology.