Sensory loss due to object formation

The precision to locate individual features in depth can often be improved by integrating information over space. However, this integration can sometimes be extremely detrimental, as for example in the case of the Westheimer-McKee phenomenon where features are grouped to form an object. We replicate here the known loss of precision in this phenomenon and document an additional loss of accuracy. These detrimental effects are still present when the object is elicited by other principles of organization, including a cross-modal auditory cue. Similar effects of object formation are found on lateral motion sensitivity. We then present a simple probabilistic model based on the integration of estimated depth within an object and propagation of object mean depth and uncertainty back to the elementary features of the object. This propagation of object uncertainty is a hitherto underestimated side-effect of object formation.

[1]  R. Jacobs,et al.  A probabilistic clustering theory of the organization of visual short-term memory. , 2013, Psychological review.

[2]  A. Caramazza,et al.  Conceptual Object Representations in Human Anterior Temporal Cortex , 2012, The Journal of Neuroscience.

[3]  Pascal Mamassian,et al.  Selective biasing of stereo correspondence in an ambiguous stereogram , 2005, Vision Research.

[4]  R. Basri,et al.  The role of convexity in perceptual completion: beyond good continuation , 1999, Vision Research.

[5]  Jonathan D. Victor,et al.  Reading a population code: a multi-scale neural model for representing binocular disparity , 2003, Vision Research.

[6]  I. Ohzawa,et al.  Encoding of binocular disparity by complex cells in the cat's visual cortex. , 1996, Journal of neurophysiology.

[7]  Paul Schrater,et al.  Shape perception reduces activity in human primary visual cortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  A. Parker Binocular depth perception and the cerebral cortex , 2007, Nature Reviews Neuroscience.

[9]  E. Callaway,et al.  Parallel processing strategies of the primate visual system , 2009, Nature Reviews Neuroscience.

[10]  Ian P. Howard,et al.  A Craik-O'Brien-Cornsweet illusion for visual depth , 1978, Vision Research.

[11]  P Cammack,et al.  Depth perception in disparity-defined objects: finding the balance between averaging and segregation , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[12]  F. A. Miles Binocular Vision and Stereopsis by Ian P. Howard and Brian J. Rogers, Oxford University Press, 1995. £90.00 (736 pages) ISBN 0 19 508476 4. , 1996, Trends in Neurosciences.

[13]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[14]  David C Knill,et al.  Mixture models and the probabilistic structure of depth cues , 2003, Vision Research.

[15]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[16]  Andrew E Welchman,et al.  The Human Brain in Depth: How We See in 3D. , 2016, Annual review of vision science.

[17]  Laurie M. Wilcox,et al.  The role of monocularly visible regions in depth and surface perception , 2009, Vision Research.

[18]  P Perona,et al.  Image recognition: visual grouping, recognition, and learning. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  G Westheimer,et al.  The spatial sense of the eye. Proctor lecture. , 1979, Investigative ophthalmology & visual science.

[20]  B. Rogers,et al.  Similarities between motion parallax and stereopsis in human depth perception , 1982, Vision Research.

[21]  Manish Singh,et al.  Bayesian estimation of the shape skeleton , 2006, Proceedings of the National Academy of Sciences.

[22]  N Jeremy Hill,et al.  Cue combination and the effect of horizontal disparity and perspective on stereoacuity. , 2007, Spatial vision.

[23]  Paul B. Hibbard A statistical model of binocular disparity , 2007 .

[24]  Suzanne P. McKee,et al.  The spatial requirements for fine stereoacuity , 1983, Vision Research.

[25]  P. Mamassian Depth, but not surface orientation, from binocular disparities , 2010 .

[26]  O. Braddick Segmentation versus integration in visual motion processing , 1993, Trends in Neurosciences.

[27]  Barton L. Anderson,et al.  The role of partial occlusion in stereopsis , 1994, Nature.

[28]  Allen Brookes,et al.  Integrating stereopsis with monocular interpretations of planar surfaces , 1988, Vision Research.

[29]  Proctor Lecture,et al.  The spatial sense of the eye , 2017 .

[30]  S. Palmer,et al.  A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. , 2012, Psychological bulletin.

[31]  Alessandro Moscatelli,et al.  Modeling psychophysical data at the population-level: the generalized linear mixed model. , 2012, Journal of vision.

[32]  S. McKee,et al.  Bias and sensitivity of stereo judgements in the presence of a slanted reference plane , 1999, Vision Research.

[33]  Guillaume S. Masson,et al.  The behavioral receptive field underlying motion integration for primate tracking eye movements , 2012, Neuroscience & Biobehavioral Reviews.

[34]  Bernard Delyon,et al.  Accelerated Stochastic Approximation , 1993, SIAM J. Optim..

[35]  A. B. Nutt Binocular vision. , 1945, The British orthoptic journal.

[36]  R. Goutcher,et al.  Surface continuity and discontinuity bias the perception of stereoscopic depth. , 2018, Journal of vision.

[37]  Hongjing Lu,et al.  Amodal completion impairs stereoacuity discrimination , 2006, Vision Research.

[38]  Andrew Gelman,et al.  Why We (Usually) Don't Have to Worry About Multiple Comparisons , 2009, 0907.2478.

[39]  Marina Zannoli Organisation of audio-visual three-dimensional space , 2012 .

[40]  G. Alvarez Representing multiple objects as an ensemble enhances visual cognition , 2011, Trends in Cognitive Sciences.

[41]  M. Landy,et al.  Why Is Spatial Stereoresolution So Low? , 2004, The Journal of Neuroscience.

[42]  Stephen Grossberg,et al.  A laminar cortical model of stereopsis and 3D surface perception: closure and da Vinci stereopsis. , 2004, Spatial vision.

[43]  G Mitchison,et al.  Planarity and Segmentation in Stereoscopic Matching , 1988, Perception.

[44]  Pascal Mamassian,et al.  The role of transparency in da Vinci stereopsis , 2011, Vision Research.

[45]  S Grossberg,et al.  Cortical dynamics of three-dimensional form, color, and brightness perception: II. Binocular theory , 1988, Perception & psychophysics.

[46]  L. Wilcox,et al.  Gestalt grouping via closure degrades suprathreshold depth percepts. , 2014, Journal of vision.

[47]  G C DeAngelis,et al.  The physiology of stereopsis. , 2001, Annual review of neuroscience.

[48]  A. Yuille,et al.  Object perception as Bayesian inference. , 2004, Annual review of psychology.

[49]  T. Poggio,et al.  The analysis of stereopsis. , 1984, Annual review of neuroscience.

[50]  M. Banks,et al.  An Analysis of Binocular Slant Contrast , 1999, Perception.

[51]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[52]  Barbara Gillam,et al.  Perspective, Orientation Disparity, and Anisotropy in Stereoscopic Slant Perception , 1992, Perception.

[53]  G. Westheimer,et al.  The perception of depth in simple figures , 1984, Vision Research.

[54]  Andrew Glennerster,et al.  Evidence for Surface-Based Processing of Binocular Disparity , 2002, Current Biology.

[55]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[56]  J. Pokorny Foundations of Cyclopean Perception , 1972 .

[57]  L. Wilcox,et al.  Depth magnitude from stereopsis: Assessment techniques and the role of experience , 2016, Vision Research.

[58]  F. Qiu,et al.  Figure and Ground in the Visual Cortex: V2 Combines Stereoscopic Cues with Gestalt Rules , 2005, Neuron.

[59]  Bruce G. Cumming,et al.  Adaptation to Natural Binocular Disparities in Primate V1 Explained by a Generalized Energy Model , 2008, Neuron.

[60]  J. Marsh,et al.  Anisotropies in the Perception of Three-Dimensional Surfaces , .

[61]  Wendy J Adams,et al.  Bayesian modeling of cue interaction: bistability in stereoscopic slant perception. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[62]  Preeti Verghese,et al.  Motion grouping impairs speed discrimination , 2006, Vision Research.

[63]  Gregory C. DeAngelis,et al.  Depth is encoded in the visual cortex by a specialized receptive field structure , 1991, Nature.

[64]  Heinz Werner,et al.  Dynamics in binocular depth perception , 1937 .

[65]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[66]  Preeti Verghese,et al.  Perceived visual speed constrained by image segmentation , 1996, Nature.

[67]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[68]  Konrad Paul Kording,et al.  Causal Inference in Multisensory Perception , 2007, PloS one.

[69]  M. Landy,et al.  Bayesian Modelling of Visual Perception , 2002 .

[70]  Emily A. Cooper,et al.  Blur and Disparity Are Complementary Cues to Depth , 2012, Current Biology.