Marine Ecosystem Dynamics and Biogeochemical Cycling in the Community Earth System Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 Scenarios

AbstractThe authors compare Community Earth System Model results to marine observations for the 1990s and examine climate change impacts on biogeochemistry at the end of the twenty-first century under two future scenarios (Representative Concentration Pathways RCP4.5 and RCP8.5). Late-twentieth-century seasonally varying mixed layer depths are generally within 10 m of observations, with a Southern Ocean shallow bias. Surface nutrient and chlorophyll concentrations exhibit positive biases at low latitudes and negative biases at high latitudes. The volume of the oxygen minimum zones is overestimated.The impacts of climate change on biogeochemistry have similar spatial patterns under RCP4.5 and RCP8.5, but perturbation magnitudes are larger under RCP8.5. Increasing stratification leads to weaker nutrient entrainment and decreased primary and export production (>30% over large areas). The global-scale decreases in primary and export production scale linearly with the increases in mean sea surface temperature....

[1]  K. Lindsay,et al.  Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variations in mineral dust deposition , 2006 .

[2]  N. Mahowald,et al.  Combustion iron distribution and deposition , 2007 .

[3]  T. Ilyina,et al.  Detection and projection of carbonate dissolution in the water column and deep‐sea sediments due to ocean acidification , 2012 .

[4]  S. Doney,et al.  Modelling regional responses by marine pelagic ecosystems to global climate change , 2002 .

[5]  K. Lindsay,et al.  Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry , 2009 .

[6]  Scott C. Doney,et al.  Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation , 2007 .

[7]  K. Lindsay,et al.  The iron budget in ocean surface waters in the 20th and 21st centuries: projections by the Community Earth System Model version 1 , 2013 .

[8]  M. Holland,et al.  Twenty-First-Century Arctic Climate Change in CCSM4 , 2012 .

[9]  J. Randerson,et al.  Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries , 2013 .

[10]  Kitack Lee Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon , 2001 .

[11]  Keith Lindsay,et al.  Upper ocean ecosystem dynamics and iron cycling in a global three‐dimensional model , 2004 .

[12]  Scott C. Doney,et al.  Projected 21st century decrease in marine productivity: a multi-model analysis , 2009 .

[13]  J. Kay,et al.  Late-Twentieth-Century Simulation of Arctic Sea Ice and Ocean Properties in the CCSM4 , 2012 .

[14]  J. K. Moore,et al.  Simulation of anthropogenic CO 2 uptake in the CCSM3.1 ocean circulation-biogeochemical model: comparison with data-based estimates , 2011 .

[15]  D. Capone,et al.  Stoichiometry of nitrogen and carbon utilization in cultured populations of Trichodesmium IMS101: Implications for growth , 2001 .

[16]  D. Capone,et al.  NITROGEN UTILIZATION AND METABOLISM RELATIVE TO PATTERNS OF N2 FIXATION IN CULTURES OF TRICHODESMIUM NIBB1067 , 1999 .

[17]  S. Doney,et al.  A decade of synthesis and modeling in the US Joint Global Ocean Flux Study , 2006 .

[18]  A. Paulmier,et al.  Oxygen minimum zones (OMZs) in the modern ocean , 2009 .

[19]  D. Lawrence,et al.  Observed 20th century desert dust variability: Impact on climate and biogeochemistry , 2010 .

[20]  F. Joos,et al.  Global warming and marine carbon cycle feedbacks on future atmospheric CO2 , 1999, Science.

[21]  Nicholas R. Bates,et al.  Pelagic functional group modeling: Progress, challenges and prospects , 2006 .

[22]  Corinne Hartin,et al.  The Southern Ocean and Its climate in CCSM4 , 2012 .

[23]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[24]  K. Lindsay,et al.  Evolution of carbon sinks in a changing climate. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  E. Maier‐Reimer,et al.  Future ocean uptake of CO2: interaction between ocean circulation and biology , 1996 .

[26]  S. Doney,et al.  Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean , 2001 .

[27]  R. Slater,et al.  A new estimate of the CaCO3 to organic carbon export ratio , 2002 .

[28]  Andreas Oschlies,et al.  Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business‐as‐usual CO2 emission scenario until year 4000 AD , 2008 .

[29]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[30]  J. K. Moore,et al.  Variability of primary production and air‐sea CO2 flux in the Southern Ocean , 2012 .

[31]  N. Mahowald,et al.  Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution , 2003 .

[32]  James D. Scott,et al.  Enhanced upper ocean stratification with climate change in the CMIP3 models , 2012 .

[33]  H. Dietze,et al.  Effects of increased isopycnal diffusivity mimicking the unresolved equatorial intermediate current system in an earth system climate model , 2013 .

[34]  N. Nakicenovic,et al.  RCP 8.5—A scenario of comparatively high greenhouse gas emissions , 2011 .

[35]  J. Sprintall,et al.  Expanding Oxygen-Minimum Zones in the Tropical Oceans , 2008, Science.

[36]  K. Lindsay,et al.  Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air–sea CO2 fluxes: Physical climate and atmospheric dust , 2009 .

[37]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[38]  H. Matthews,et al.  Calcium carbonate production response to future ocean warming and acidification , 2011 .

[39]  N. Mahowald,et al.  Exploring the sensitivity of interannual basin‐scale air‐sea CO2 fluxes to variability in atmospheric dust deposition using ocean carbon cycle models and atmospheric CO2 inversions , 2007 .

[40]  S. Wakeham,et al.  A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals , 2001 .

[41]  Andrew J. Watson,et al.  Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models , 2005 .

[42]  Richard A. Feely,et al.  A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) , 2004 .

[43]  D. Capone,et al.  Dinitrogen fixation and release of ammonium and dissolved organic nitrogen by Trichodesmium IMS101 , 2004 .

[44]  J. Lamarque,et al.  Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system , 2007, Proceedings of the National Academy of Sciences.

[45]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[46]  J. K. Moore,et al.  Sedimentary and mineral dust sources of dissolved iron to the World Ocean , 2007 .

[47]  R. Feely,et al.  Ocean acidification: the other CO2 problem. , 2009, Annual review of marine science.

[48]  J. Montoya,et al.  INTERACTIONS BETWEEN NITRATE UPTAKE AND NITROGEN FIXATION IN CONTINUOUS CULTURES OF THE MARINE DIAZOTROPH TRICHODESMIUM (CYANOBACTERIA) 1 , 2005 .

[49]  C. Zender,et al.  Effects of atmospheric inorganic nitrogen deposition on ocean biogeochemistry , 2007 .

[50]  Taro Takahashi,et al.  Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data , 2009 .

[51]  A. Gnanadesikan,et al.  Understanding why the volume of suboxic waters does not increase over centuries of global warming in an Earth System Model , 2012 .

[52]  J. Dunne,et al.  Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions , 2006 .

[53]  J. Randerson,et al.  Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model , 2010 .

[54]  S. Doney,et al.  An intermediate complexity marine ecosystem model for the global domain , 2001 .

[55]  J. Sarmiento,et al.  Empirical and mechanistic models for the particle export ratio , 2005 .

[56]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[57]  S. Fan,et al.  Aeolian input of bioavailable iron to the ocean , 2006 .

[58]  C. Deutsch,et al.  Marine denitrification rates determined from a global 3-D inverse model , 2013 .

[59]  Nicolas Gruber,et al.  Ocean deoxygenation in a warming world. , 2010, Annual review of marine science.

[60]  David M. Karl,et al.  Dinitrogen fixation in the world's oceans , 2002 .

[61]  S. Bates,et al.  The CCSM4 Ocean Component , 2012 .

[62]  Peter E. Thornton,et al.  Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model , 2009 .

[63]  C. Zender,et al.  Constraining oceanic dust deposition using surface ocean dissolved Al , 2008 .

[64]  P. Sedwick,et al.  Fractional solubility of aerosol iron: Synthesis of a global-scale data set , 2012 .

[65]  S. Doney,et al.  Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink , 2008 .

[66]  John P. Weyant,et al.  A special issue on the RCPs , 2011 .

[67]  J. Blackford Predicting the impacts of ocean acidification: Challenges from an ecosystem perspective , 2010 .

[68]  N. Mahowald,et al.  Impacts of atmospheric nutrient inputs on marine biogeochemistry , 2010 .

[69]  Ulrike Löptien,et al.  Revisiting “nutrient trapping” in global coupled biogeochemical ocean circulation models , 2013 .

[70]  John P. Dunne,et al.  Data‐based estimates of suboxia, denitrification, and N2O production in the ocean and their sensitivities to dissolved O2 , 2012 .

[71]  J. Edmonds,et al.  RCP4.5: a pathway for stabilization of radiative forcing by 2100 , 2011 .

[72]  Scott C. Doney,et al.  Assessment of skill and portability in regional marine biogeochemical models : Role of multiple planktonic groups , 2007 .

[73]  Gurvan Madec,et al.  Potential impact of climate change on marine export production , 2001 .

[74]  A. Hirst,et al.  Climate change feedback on the future oceanic CO2 uptake , 1999 .

[75]  François Primeau,et al.  Optimization and sensitivity study of a biogeochemistry ocean model using an implicit solver and in situ phosphate data , 2006 .

[76]  S. Doney,et al.  Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light , 2010 .

[77]  Andreas Oschlies,et al.  Can we predict the direction of marine primary production change under global warming? , 2011 .

[78]  Fortunat Joos,et al.  Sensitivity of pelagic calcification to ocean acidification , 2011 .

[79]  D. Capone,et al.  Nitrogen fixation, uptake and metabolism in natural and cultured populations of Trichodesmium spp. , 1999 .

[80]  Hans W. Paerl,et al.  The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene?* , 2001 .