One-Dimensional R=2 Cellular Automata with Memory

Standard Cellular Automata (CA) are ahistoric (memoryless): i.e. the new state of a cell depends on the neighborhood configuration only at the preceding time step. This article introduces an extension to the standard framework of CA by considering automata implementing memory capabilities. While the update rules of the CA remains the same, each site remembers a weighted mean of all its past states, with a decreasing weight of states farther in the past. The historic weighting is defined by a geometric series of coefficients based on a memory factor (α). This paper considers the time evolution of one-dimensional range-two CA with memory.