DIGITAL PID CONTROLLER DESIGN FOR DELAYED MULTIVARIABLE SYSTEMS

A new methodology is proposed to design digital PID controllers for multivariable systems with time delays. Except for a few parameters that are preliminarily selected, most of the PID parameters are systematically tuned using the developed plant state-feedback and controller state-feedforward LQR approach, such that satisfactory performance with guaranteed closed-loop stability is achieved. In order to deal with the modeling error owing to the delay time rational approximation, an IMC structure is utilized, such that robust stability is achieved, without need for an observer, and with improved online tuning convenience. Using the prediction-based digital redesign method, the digital implementation is obtained based on the above-proposed analog controller, such that the resulting mixed-signal system performance will closely match that of the analog controlled system. An illustrative example is given for comparison with alternative techniques.

[1]  M. R. Katebi,et al.  The Mimo Predictive Pid Controller Design , 2002 .

[2]  Weidong Zhang,et al.  Optimal solution, quantitative performance estimation, and robust tuning of the simplifying controller. , 2002, ISA transactions.

[3]  Naim A. Kheir,et al.  Control system design , 2001, Autom..

[4]  J. E. Marshall,et al.  Control of Time-Delay Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  D. Seborg,et al.  Multiloop PI/PID controller design based on Gershgorin bands , 2001 .

[6]  Tong Heng Lee,et al.  On the design of multivariable PID controllers via LMI approach , 2002, Autom..

[7]  C. Knospe,et al.  PID control , 2006, IEEE Control Systems.

[8]  Tore Hägglund,et al.  Advances in Pid Control , 1999 .

[9]  C. K. Sanathanan,et al.  Robust design for disturbance rejection in time delay systems , 1997 .

[10]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[11]  Toru Yamamoto,et al.  A Design Of Multiloop Predictive Self‐Tuning Pid Controllers , 2002 .

[12]  K. K. Tan,et al.  Optimal Smith-Predictor Design Based on a GPC Approach , 2002 .

[13]  Pradeep B. Deshpande Multivariable process control , 1989 .

[14]  C. K. Sanathanan,et al.  A model matching approach for designing decentralized MIMO controllers , 2000, J. Frankl. Inst..

[15]  Huang,et al.  Development of a GPC-based PID controller for unstable systems with deadtime , 2000, ISA transactions.

[16]  H. Marquez,et al.  Robust Controller Design And Pid Tuning For Multivariable Processes , 2002 .

[17]  Guanrong Chen,et al.  Effective chaotic orbit tracker: a prediction-based digital redesign approach , 2000 .

[18]  V. Manousiouthakis,et al.  Best achievable decentralized performance , 1995, IEEE Trans. Autom. Control..

[19]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[20]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[21]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[22]  Leang S. Shieh,et al.  Design of PAM and PWM digital controllers for cascaded analog systems , 1998 .

[23]  Karl Johan Åström,et al.  Dominant pole placement for multi-loop control systems , 2002, Autom..

[24]  Yong Zhang,et al.  Partial internal model control , 2001, IEEE Trans. Ind. Electron..

[25]  Chang Chieh Hang,et al.  Single-loop controller design via IMC principles , 2001, Autom..

[26]  Donald A. Pierre,et al.  Digital controller design — Alternative emulation approaches , 1995 .

[27]  J.M. Wassick,et al.  Multivariable internal model control for a full-scale industrial distillation column , 1989, IEEE Control Systems Magazine.

[28]  J. Boimond,et al.  Internal model control and max-algebra: controller design , 1996, IEEE Trans. Autom. Control..

[29]  Atsuo Kawamura,et al.  Generalized digital redesign method for linear feedback system based on N-delay control , 1999 .

[30]  Kok Kiong Tan,et al.  Predictive PI versus Smith control for dead-time compensation , 2001 .