Convergence of an Adaptive Finite Element Method for Controlling Local Energy Errors

A number of works concerning rigorous convergence theory for adaptive finite element methods (AFEMs) for controlling global energy errors have appeared in recent years. However, many practical situations demand AFEMs designed to efficiently compute quantities which depend on the unknown solution only on some subset of the overall computational domain. In this work we prove convergence of an AFEM for controlling local energy errors. The first step in our convergence proof is the construction of novel a posteriori error estimates for controlling a weighted local energy error. This weighted local energy notion admits versions of standard ingredients for proving convergence of AFEMs such as quasi-orthogonality and error contraction, but modulo “pollution terms” which use weaker norms to measure effects of global solution properties on the local energy error. We then prove several convergence results for AFEMs based on various marking strategies, including a contraction result in the case of convex polyhedral domains.

[1]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[2]  Kunibert G. Siebert,et al.  A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .

[3]  Michael Vogelius,et al.  Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .

[4]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[5]  Michael J. Holst,et al.  Generalized Green's Functions and the Effective Domain of Influence , 2005, SIAM J. Sci. Comput..

[6]  A. H. Schatz,et al.  Interior estimates for Ritz-Galerkin methods , 1974 .

[7]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[8]  Jinchao Xu,et al.  Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..

[9]  Alan Demlow,et al.  Local energy estimates for the finite element method on sharply varying grids , 2008, Math. Comput..

[10]  M. Holst Applications of Domain Decomposition and Partition of Unity Methods in Physics and Geometry , 2010, 1001.1364.

[11]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[12]  Monique Dauge,et al.  Neumann and mixed problems on curvilinear polyhedra , 1992 .

[13]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[14]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[15]  I. Babuška,et al.  Analysis of finite element methods for second order boundary value problems using mesh dependent norms , 1980 .

[16]  Ricardo H. Nochetto,et al.  Local a posteriori error estimates and adaptive control of pollution effects , 2003 .

[17]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[18]  Ricardo H. Nochetto,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[19]  Kenneth Eriksson,et al.  AN ADAPTIVE FINITE ELEMENT METHOD WITH EFFICIENT MAXIMUM NORM ERROR CONTROL FOR ELLIPTIC PROBLEMS , 1994 .

[20]  Michael J. Holst,et al.  A New Paradigm for Parallel Adaptive Meshing Algorithms , 2000, SIAM J. Sci. Comput..

[21]  Ricardo H. Nochetto,et al.  AN ADAPTIVE FINITE ELEMENT METHOD FOR TWO-PHASE STEFAN PROBLEMS IN TWO SPACE DIMENSIONS. PART I: STABILITY AND ERROR ESTIMATES , 1991 .

[22]  A. Schmidt,et al.  Design of Adaptive Finite Element Software , 2005 .

[23]  Ricardo H. Nochetto,et al.  An Adaptive Finite Element Method for Two-Phase Stefan Problems in Two Space Dimensions. II: Implementation and Numerical Experiments , 1991, SIAM J. Sci. Comput..

[24]  Alan Demlow,et al.  Convergence and quasi-optimality of an adaptive finite element method for controlling L2 errors , 2011, Numerische Mathematik.

[25]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[26]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[27]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[28]  Alan Demlow,et al.  Local a posteriori estimates for pointwise gradient errors in finite element methods for elliptic problems , 2007, Math. Comput..