On the role of lipid in colicin pore formation.

Insights into the protein-membrane interactions by which the C-terminal pore-forming domain of colicins inserts into membranes and forms voltage-gated channels, and the nature of the colicin channel, are provided by data on: (i) the flexible helix-elongated state of the colicin pore-forming domain in the fluid anionic membrane interfacial layer, the optimum anionic surface charge for channel formation, and voltage-gated translocation of charged regions of the colicin domain across the membrane; (ii) structure-function data on the voltage-gated K(+) channel showing translocation of an arginine-rich helical segment through the membrane; (iii) toroidal channels formed by small peptides that involve local participation of anionic lipids in an inverted phase. It is proposed that translocation of the colicin across the membrane occurs through minimization of the Born charging energy for translocation of positively charged basic residues across the lipid bilayer by neutralization with anionic lipid head groups. The resulting pore structure may consist of somewhat short, ca. 16 residues, trans-membrane helices, in a locally thinned membrane, together with surface elements of inverted phase lipid micelles.

[1]  Genji Kurisu,et al.  The structure of BtuB with bound colicin E3 R-domain implies a translocon , 2003, Nature Structural Biology.

[2]  Boris Martinac,et al.  Open channel structure of MscL and the gating mechanism of mechanosensitive channels , 2002, Nature.

[3]  M. Shoham,et al.  Crystal structure of colicin E3: implications for cell entry and ribosome inactivation. , 2001, Molecular cell.

[4]  S. Zakharov,et al.  Tuning the membrane surface potential for efficient toxin import , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  S. White,et al.  Peptides in lipid bilayers: structural and thermodynamic basis for partitioning and folding , 1994 .

[6]  Youxing Jiang,et al.  The open pore conformation of potassium channels , 2002, Nature.

[7]  S. Slatin Colicin el in planar lipid bilayers , 1988 .

[8]  Y. Shai,et al.  Mode of action of membrane active antimicrobial peptides. , 2002, Biopolymers.

[9]  W. Cramer,et al.  Identification of a voltage-responsive segment of the potential-gated colicin E1 ion channel. , 1990, Biochemistry.

[10]  Z. Salamon,et al.  Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M. Roseman,et al.  Distribution of cytochrome b5 between small and large unilamellar phospholipid vesicles. , 1986, The Journal of biological chemistry.

[12]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[13]  D Eisenberg,et al.  Refined structure of monomelic diphtheria toxin at 2.3 Å resolution , 1994, Protein science : a publication of the Protein Society.

[14]  R. MacKinnon,et al.  Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution , 2001, Nature.

[15]  B. Peter,et al.  BAR Domains as Sensors of Membrane Curvature: The Amphiphysin BAR Structure , 2004, Science.

[16]  G. Anderluh,et al.  Pore Formation by Equinatoxin II, a Eukaryotic Protein Toxin, Occurs by Induction of Nonlamellar Lipid Structures* , 2003, Journal of Biological Chemistry.

[17]  A. J. Clifford,et al.  BIOCHIMICA ET BIOPHYSICA ACTA , 2022 .

[18]  F Bezanilla,et al.  The voltage sensor in voltage-dependent ion channels. , 2000, Physiological reviews.

[19]  J. Martinou,et al.  Direct evidence for membrane pore formation by the apoptotic protein Bax. , 2002, Biochemical and biophysical research communications.

[20]  J. Zimmerberg,et al.  Bax-type Apoptotic Proteins Porate Pure Lipid Bilayers through a Mechanism Sensitive to Intrinsic Monolayer Curvature* , 2002, The Journal of Biological Chemistry.

[21]  R. Meadows,et al.  X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death , 1996, Nature.

[22]  K. J. Oh,et al.  Topography of Diphtheria Toxin's T Domain in the Open Channel State , 2000, The Journal of general physiology.

[23]  C. Dempsey,et al.  Enhanced membrane permeabilization and antibacterial activity of a disulfide-dimerized magainin analogue. , 2003, Biochemistry.

[24]  Pavel Strop,et al.  Crystal Structure of Escherichia coli MscS, a Voltage-Modulated and Mechanosensitive Channel , 2002, Science.

[25]  S. Korsmeyer,et al.  Solution Structure of the Proapoptotic Molecule BID A Structural Basis for Apoptotic Agonists and Antagonists , 1999, Cell.

[26]  S. Zakharov,et al.  Kinetic description of structural changes linked to membrane import of the colicin E1 channel protein. , 1999, Biochemistry.

[27]  W. Cramer,et al.  A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. , 1997, Structure.

[28]  P. Kienker,et al.  Sizing the Protein Translocation Pathway of Colicin Ia Channels , 2003, The Journal of general physiology.

[29]  L. Yang,et al.  Barrel-stave model or toroidal model? A case study on melittin pores. , 2001, Biophysical journal.

[30]  S. Korn,et al.  Potassium channels , 2005, IEEE Transactions on NanoBioscience.

[31]  F. Bezanilla,et al.  A proton pore in a potassium channel voltage sensor reveals a focused electric field , 2004, Nature.

[32]  G. Schwarz,et al.  A combined study of aggregation, membrane affinity and pore activity of natural and modified melittin. , 1991, Biochimica et biophysica acta.

[33]  V. V. Malev,et al.  Syringomycin E channel: a lipidic pore stabilized by lipopeptide? , 2002, Biophysical journal.

[34]  S. Zakharov,et al.  Characterization of electrostatic and nonelectrostatic components of protein--membrane binding interactions. , 1996, Biochemistry.

[35]  G. Vonheijne MEMBRANE PROTEINS : FROM SEQUENCE TO STRUCTURE , 1994 .

[36]  S. Ludtke,et al.  Membrane thinning caused by magainin 2. , 1995, Biochemistry.

[37]  M. Sansom Structure and function of channel-forming peptaibols , 1993, Quarterly Reviews of Biophysics.

[38]  D. Huster,et al.  Conformational changes of colicin Ia channel-forming domain upon membrane binding: a solid-state NMR study. , 2002, Biochimica et biophysica acta.

[39]  R. Epand,et al.  Relationship of membrane curvature to the formation of pores by magainin 2. , 1998, Biochemistry.

[40]  R. Epand Lipid polymorphism and protein-lipid interactions. , 1998, Biochimica et biophysica acta.

[41]  V. Braun,et al.  Ton-dependent colicins and microcins: modular design and evolution. , 2002, Biochimie.

[42]  M. Cadene,et al.  X-ray structure of a voltage-dependent K+ channel , 2003, Nature.

[43]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[44]  W. Cramer,et al.  Voltage-dependent, monomeric channel activity of colicin E1 in artificial membrane vesicles , 2005, The Journal of Membrane Biology.

[45]  D. Tsernoglou,et al.  Refined structure of the pore-forming domain of colicin A at 2.4 A resolution. , 1992, Journal of molecular biology.

[46]  S. McLaughlin,et al.  The electrostatic properties of membranes. , 1989, Annual review of biophysics and biophysical chemistry.

[47]  H Videler,et al.  A structural comparison of the colicin immunity proteins Im7 and Im9 gives new insights into the molecular determinants of immunity-protein specificity. , 1998, The Biochemical journal.

[48]  Youxing Jiang,et al.  The principle of gating charge movement in a voltage-dependent K+ channel , 2003, Nature.

[49]  C. Kang,et al.  Crystal structure of the cytotoxic bacterial protein colicin B at 2.5 Å resolution , 2004, Molecular microbiology.

[50]  Assaf Zemel,et al.  Energetics and self-assembly of amphipathic peptide pores in lipid membranes. , 2003, Biophysical journal.

[51]  Fu-yu Yang,et al.  tBid forms a pore in the liposome membrane , 2003, FEBS letters.

[52]  R. Stroud,et al.  Crystal structure of colicin Ia , 1997, Nature.

[53]  W. Cramer,et al.  On the physical basis for the cis‐positive rule describing protein orientation in biological membranes , 1995, FEBS letters.

[54]  D. Duché,et al.  Translocation of a functional protein by a voltage-dependent ion channel , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  P. Kienker,et al.  Channel-forming colicins: translocation (and other deviant behaviour) associated with colicin Ia channel gating , 1999, Quarterly Reviews of Biophysics.

[56]  Nico Tjandra,et al.  Structure of Bax Coregulation of Dimer Formation and Intracellular Localization , 2000, Cell.

[57]  M. Parker,et al.  Uncoupled steps of the colicin A pore formation demonstrated by disulfide bond engineering. , 1994, The Journal of biological chemistry.

[58]  R. Kadner,et al.  Touch and go: tying TonB to transport , 2003, Molecular microbiology.

[59]  I. Vetter,et al.  Crystal structure of a colicin N fragment suggests a model for toxicity. , 1998, Structure.

[60]  P. Reeves,et al.  Iron uptake in colicin B-resistant mutants of Escherichia coli K-12 , 1976, Journal of bacteriology.

[61]  J. Killian,et al.  Stability of KcsA tetramer depends on membrane lateral pressure. , 2004, Biochemistry.

[62]  R. MacKinnon,et al.  Lipids in the structure, folding, and function of the KcsA K+ channel. , 2002, Biochemistry.

[63]  L. Tamm,et al.  Elastic coupling of integral membrane protein stability to lipid bilayer forces , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[64]  F. Jacob,et al.  [Biosynthesis of a colicin and its mode of action]. , 1952, Annales de l'Institut Pasteur.

[65]  G. Molle,et al.  Antimicrobial peptide magainin I from Xenopus skin forms anion-permeable channels in planar lipid bilayers. , 1989, Biophysical journal.

[66]  C. Potrich,et al.  Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. , 2001, Biophysical journal.

[67]  Y. Shai,et al.  Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. , 1999, Biochimica et biophysica acta.

[68]  S J Ludtke,et al.  Membrane pores induced by magainin. , 1996, Biochemistry.

[69]  P. Kienker,et al.  Major transmembrane movement associated with colicin Ia channel gating , 1996, The Journal of general physiology.

[70]  N. Fujii,et al.  Orientational and aggregational states of magainin 2 in phospholipid bilayers. , 1994, Biochemistry.

[71]  J. Lakey,et al.  Pore-forming colicins and their relatives. , 2001, Current topics in microbiology and immunology.

[72]  D. Cherepanov,et al.  Intramembrane electric fields: A single charge, protein α-helix, photosynthetic reaction centre , 1990 .

[73]  Bertrand Morel,et al.  The cytotoxic domain of colicin E9 is a channel-forming endonuclease , 2002, Nature Structural Biology.

[74]  A. Petros,et al.  Solution structure of the antiapoptotic protein bcl-2 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[75]  S. Zakharov,et al.  Membrane binding of the colicin E1 channel: activity requires an electrostatic interaction of intermediate magnitude. , 1996, Biophysical journal.

[76]  Sheena E. Radford,et al.  Structural and mechanistic basis of immunity toward endonuclease colicins , 1999, Nature Structural Biology.

[77]  D. Hughes,et al.  The Apoptotic Protein tBid Promotes Leakage by Altering Membrane Curvature* , 2002, The Journal of Biological Chemistry.

[78]  P. Kienker,et al.  Protein Translocation across Planar Bilayers by the Colicin Ia Channel-Forming Domain , 2000, The Journal of general physiology.

[79]  L. Xiao,et al.  Solid-state NMR investigation of the dynamics of the soluble and membrane-bound colicin Ia channel-forming domain. , 2001, Biochemistry.

[80]  C. Haass,et al.  α-Synuclein Has a High Affinity for Packing Defects in a Bilayer Membrane , 2004, Journal of Biological Chemistry.

[81]  S. Zakharov,et al.  Unfolding pathway of the colicin E1 channel protein on a membrane surface. , 2000, Journal of molecular biology.