Shisa6 traps AMPA receptors at postsynaptic sites and prevents their desensitization during synaptic activity

[1]  H. Monyer,et al.  Coexpressed Auxiliary Subunits Exhibit Distinct Modulatory Profiles on AMPA Receptor Function , 2014, Neuron.

[2]  H. Mansvelder,et al.  C-Terminal Interactors of the AMPA Receptor Auxiliary Subunit Shisa9 , 2014, PloS one.

[3]  Daniel Choquet,et al.  Super-Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dynamically Organized in Nanodomains Regulated by PSD95 , 2013, The Journal of Neuroscience.

[4]  J. Coon,et al.  A proteomics search algorithm specifically designed for high-resolution tandem mass spectra. , 2013, Journal of proteome research.

[5]  M. Farrant,et al.  Cornichons Modify Channel Properties of Recombinant and Glial AMPA Receptors , 2012, The Journal of Neuroscience.

[6]  Daniel Choquet,et al.  Regulation of AMPA receptor surface diffusion by PSD-95 slots , 2012, Current Opinion in Neurobiology.

[7]  Uwe Schulte,et al.  High-Resolution Proteomics Unravel Architecture and Molecular Diversity of Native AMPA Receptor Complexes , 2012, Neuron.

[8]  N. Grishin,et al.  Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors. , 2012, Cellular signalling.

[9]  P. Castillo Presynaptic LTP and LTD of excitatory and inhibitory synapses. , 2012, Cold Spring Harbor perspectives in biology.

[10]  S. Tomita,et al.  Defined criteria for auxiliary subunits of glutamate receptors , 2012, The Journal of physiology.

[11]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[12]  Wade G Regehr,et al.  Short-term forms of presynaptic plasticity , 2011, Current Opinion in Neurobiology.

[13]  B. Imperiali,et al.  Biomimetic divalent ligands for the acute disruption of synaptic AMPAR stabilization. , 2011, Nature chemical biology.

[14]  D. Choquet,et al.  CaMKII Triggers the Diffusional Trapping of Surface AMPARs through Phosphorylation of Stargazin , 2010, Neuron.

[15]  D. Choquet Fast AMPAR trafficking for a high‐frequency synaptic transmission , 2010, The European journal of neuroscience.

[16]  Ozlem Keskin,et al.  Interaction prediction and classification of PDZ domains , 2010, BMC Bioinformatics.

[17]  Hannah Monyer,et al.  CKAMP44: A Brain-Specific Protein Attenuating Short-Term Synaptic Plasticity in the Dentate Gyrus , 2010, Science.

[18]  Connie R. Jimenez,et al.  On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics , 2010, Bioinform..

[19]  Roberto Malinow,et al.  AMPA Receptor Incorporation into Synapses during LTP: The Role of Lateral Movement and Exocytosis , 2009, Neuron.

[20]  K. Schilling,et al.  The Treasury of the Commons: Making Use of Public Gene Expression Resources to Better Characterize the Molecular Diversity of Inhibitory Interneurons in the Cerebellar Cortex , 2009, The Cerebellum.

[21]  P. Jonas,et al.  Functional Proteomics Identify Cornichon Proteins as Auxiliary Subunits of AMPA Receptors , 2009, Science.

[22]  M. Ehlers,et al.  Glutamate Receptor Dynamics in Dendritic Microdomains , 2008, Neuron.

[23]  R. Huganir,et al.  The cell biology of synaptic plasticity: AMPA receptor trafficking. , 2007, Annual review of cell and developmental biology.

[24]  Daniel Choquet,et al.  The Interaction between Stargazin and PSD-95 Regulates AMPA Receptor Surface Trafficking , 2007, Neuron.

[25]  Ryohei Yasuda,et al.  Imaging spatiotemporal dynamics of neuronal signaling using fluorescence resonance energy transfer and fluorescence lifetime imaging microscopy , 2007, Current Opinion in Neurobiology.

[26]  T. Soderling,et al.  Regulatory mechanisms of AMPA receptors in synaptic plasticity , 2007, Nature Reviews Neuroscience.

[27]  S. Kaech,et al.  Culturing hippocampal neurons , 2006, Nature Protocols.

[28]  J. C. Lodder,et al.  NMDA receptors induce somatodendritic secretion in hypothalamic neurones of lactating female rats , 2004, The Journal of physiology.

[29]  A. Smit,et al.  Morphine exposure and abstinence define specific stages of gene expression in the rat nucleus accumbens , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[30]  T. Kitayama,et al.  Immunohistochemical detection by immersion fixation with Carnoy solution of particular non-N-methyl-d-aspartate receptor subunits in murine hippocampus , 2004, Neurochemistry International.

[31]  Christian Rosenmund,et al.  Subunit Composition and Alternative Splicing Regulate Membrane Delivery of Kainate Receptors , 2004, The Journal of Neuroscience.

[32]  R. Nicoll,et al.  AMPA Receptor Trafficking at Excitatory Synapses , 2003, Neuron.

[33]  D. Choquet,et al.  Direct imaging of lateral movements of AMPA receptors inside synapses , 2003, The EMBO journal.

[34]  R. Aebersold,et al.  A statistical model for identifying proteins by tandem mass spectrometry. , 2003, Analytical chemistry.

[35]  R. Nicoll,et al.  Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins , 2003, The Journal of cell biology.

[36]  A. Triller,et al.  The role of receptor diffusion in the organization of the postsynaptic membrane , 2003, Nature Reviews Neuroscience.

[37]  A. Smit,et al.  Active heroin administration induces specific genomic responses in the nucleus accumbens shell , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[38]  R. Nicoll,et al.  Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  D. Choquet,et al.  Regulation of AMPA receptor lateral movements , 2002, Nature.

[40]  K. Sobue,et al.  Rapid Redistribution of the Postsynaptic Density Protein PSD-Zip45 (Homer 1c) and Its Differential Regulation by NMDA Receptors and Calcium Channels , 2001, The Journal of Neuroscience.

[41]  Mark von Zastrow,et al.  Role of ampa receptor endocytosis in synaptic plasticity , 2001, Nature Reviews Neuroscience.

[42]  Peter Jonas,et al.  The Time Course of Signaling at Central Glutamatergic Synapses. , 2000, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[43]  D. Craik,et al.  Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. , 1999, Journal of molecular biology.

[44]  R. Weinberg,et al.  Shaping excitation at glutamatergic synapses , 1999, Trends in Neurosciences.

[45]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[46]  G. Buzsáki,et al.  AMPA receptors in the rat and primate hippocampus: a possible absence of GLUR2/3 subunits in most interneurons , 1996, Neuroscience.

[47]  D. Craik,et al.  A common structural motif incorporating a cystine knot and a triple‐stranded β‐sheet in toxic and inhibitory polypeptides , 1994, Protein science : a publication of the Protein Society.

[48]  D. R. Holland,et al.  Nerve growth factor in different crystal forms displays structural flexibility and reveals zinc binding sites. , 1994, Journal of molecular biology.

[49]  B. Sakmann,et al.  Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. , 1992, The Journal of physiology.

[50]  Tom L. Blundell,et al.  New protein fold revealed by a 2.3-Å resolution crystal structure of nerve growth factor , 1991, Nature.

[51]  Charlotte N. Henrichsen,et al.  Explorer A High-Resolution Anatomical Atlas of the Transcriptome in the Mouse Embryo , 2016 .

[52]  D. Choquet,et al.  [Surface mobility of postsynaptic AMPARs tunes synaptic transmission]. , 2008, Medecine sciences : M/S.

[53]  H. Adesnik,et al.  TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. , 2005, Nature neuroscience.

[54]  R. Malenka,et al.  AMPA receptor trafficking and synaptic plasticity. , 2002, Annual review of neuroscience.

[55]  M. Houslay Gi-2 is at the centre of an active phosphorylation/dephosphorylation cycle in hepatocytes: the fine-tuning of stimulatory and inhibitory inputs into adenylate cyclase in normal and diabetic states. , 1991, Cellular signalling.