Symmetry reductions and exact solutions of a class of nonlinear heat equations

Abstract Classical and nonclassical symmetries of the nonlinear heat equation ut = uxx + f (u) are considered. The method of differential Grobner bases is used both to find the conditions on f (u) under which symmetries other than the trivial spatial and temporal translational symmetries exist, and to solve the determining equations for the infinitesimals. A catalogue of symmetry reductions is given including some new reductions for the linear heat equation and a catalogue of exact solutions of the nonlinear heat equation for cubic f (u) in terms of the roots of f (u) = 0.

[1]  Mark J. Ablowitz,et al.  Explicit solutions of Fisher's equation for a special wave speed , 1979 .

[2]  G. Rosen The mathematical theory of diffusion and reaction in permeable catalysts , 1976 .

[3]  John Whitehead,et al.  Finite bandwidth, finite amplitude convection , 1969, Journal of Fluid Mechanics.

[4]  J. Gillis,et al.  Nonlinear Partial Differential Equations in Engineering , 1967 .

[5]  J. Cole On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .

[6]  A. Minzoni,et al.  Reaction-diffusion equations in one dimension: particular solutions and relaxation , 1982 .

[7]  C. J. Coleman On the microwave hotspot problem , 1991, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[8]  D. Lambie,et al.  Modern Analysis , 1966, Nature.

[9]  Ian Lisle,et al.  Equivalence transformations for classes of differential equations , 1992 .

[10]  François Ollivier,et al.  Canonical Bases: Relations with Standard Bases, Finiteness Conditions and Application to Tame Automorphisms , 1991 .

[11]  T. Nonnenmacher,et al.  Symmetries and integrability of generalized diffusion reaction equations , 1993 .

[12]  John S. Devitt,et al.  Isogroups of Differential Equations Using Algebraic Computing , 1992, J. Symb. Comput..

[13]  M. Tabor,et al.  Painlevé expansions for nonintegrable evolution equations , 1989 .

[14]  M. Kruskal,et al.  New similarity reductions of the Boussinesq equation , 1989 .

[15]  V. Galaktionov Quasilinear heat equations with first-order sign-invariants and new explicit solutions , 1994 .

[16]  A. Fordy,et al.  Nonlinear Evolution Equations: Integrability and Spectral Methods , 1991 .

[17]  Peter J. Olver,et al.  Group-invariant solutions of differential equations , 1987 .

[18]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[19]  G. Webb Lie symmetries of a coupled nonlinear burgers-heat equation system , 1990 .

[20]  Decio Levi,et al.  Non-classical symmetry reduction: example of the Boussinesq equation , 1989 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  J. Meinhardt,et al.  Symmetries and differential equations , 1981 .

[23]  V. Dorodnitsyn On invariant solutions of the equation of non-linear heat conduction with a source , 1982 .

[24]  A. A. Samarskii,et al.  A quasilinear heat equation with a source: Peaking, localization, symmetry exact solutions, asymptotics, structures , 1988 .

[25]  Willy Hereman,et al.  The computer calculation of Lie point symmetries of large systems of differential equations , 1991 .

[26]  Guo Ben-yu,et al.  Analytic solutions of the Nagumo equation , 1992 .

[27]  P. Clarkson,et al.  Nonclassical symmetry reductions and exact solutions of the Zabolotskaya–Khokhlov equation , 1992, European Journal of Applied Mathematics.

[28]  Jerome A. Goldstein,et al.  Partial Differential Equations and Related Topics , 1975 .

[29]  M. C. Nucci,et al.  The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh-Nagumo equation , 1992 .

[30]  Takuji Kawahara,et al.  Interactions of traveling fronts: an exact solution of a nonlinear diffusion equation , 1983 .

[31]  W. I. Fushchich,et al.  Symmetry and exact solutions of nonlinear spinor equations , 1989 .

[32]  R. Gorenflo,et al.  A noncharacteristic cauchy problem for the heat equation , 1991, Acta Applicandae Mathematicae.

[33]  M. Tabor,et al.  A unified approach to Painleve´ expansions , 1987 .

[34]  V. L. Topunov Reducing systems of linear differential equations to a passive form , 1989 .

[35]  F. Estabrook,et al.  Geometric Approach to Invariance Groups and Solution of Partial Differential Systems , 1971 .

[36]  A. Meyer,et al.  The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .

[37]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[38]  J. M. Hill Differential Equations and Group Methods for Scientists and Engineers , 1992 .

[39]  G. Gaeta COMMENT: On the conditional symmetries of Levi and Winternitz , 1990 .

[40]  P. G. Estévez The direct method and the singular manifold method for the Fitzhugh-Nagumo equation , 1992 .

[41]  N. Boccara,et al.  Partially Intergrable Evolution Equations in Physics , 1990 .

[42]  S. R. Choudhury,et al.  Painlevé analysis and special solutions of two families of reaction—diffusion equations , 1991 .

[43]  P. Winternitz Conditional symmetries and conditional integrability for nonlinear systems , 1991 .

[44]  Ben-yu Guo,et al.  Analytic solutions of the Fisher equation , 1991 .

[45]  N. F. Smyth The effect of conductivity on hotspots , 1992, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[46]  J. Cole,et al.  Similarity methods for differential equations , 1974 .

[47]  J. Weiss,et al.  The sine‐Gordon equations: Complete and partial integrability , 1984 .

[48]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[49]  Michael Tabor,et al.  Similarity reductions from extended Painleve´ expansions for nonintegrable evolution equations , 1991 .

[50]  Gregory J. Reid,et al.  Finding abstract Lie symmetry algebras of differential equations without integrating determining equations , 1991, European Journal of Applied Mathematics.

[51]  D. Frank-Kamenetskii,et al.  Diffusion and heat exchange in chemical kinetics , 1955 .

[52]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[53]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[54]  E. Pucci Similarity reductions of partial differential equations , 1992 .

[55]  P. R. Gordoa,et al.  Painleve analysis of the generalized Burgers-Huxley equation , 1990 .

[56]  P. Kaliappan,et al.  An exact solution for travelling waves of ut = Duxx + u - uk , 1984 .

[57]  Peter J. Olver,et al.  The construction of special solutions to partial differential equations , 1986 .

[58]  K. P. Hadeler,et al.  Travelling fronts in nonlinear diffusion equations , 1975 .

[59]  Giuseppe Saccomandi,et al.  On the weak symmetry groups of partial differential equations , 1992 .

[60]  Fritz Schwarz,et al.  Symmetries of Differential Equations: From Sophus Lie to Computer Algebra , 1988 .

[61]  W. Ames,et al.  Optimal numerical algorithms , 1992 .

[62]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[63]  Frann Cois Ollivier,et al.  Canonical Bases: Relations with Standard Bases, Finiteness Conditions and Application to Tame Automorphisms? , 1994 .

[64]  G. Webb Painleve´ analysis of a coupled Burgers-heat equation system, and non-classical similarity solutions of the heat equation , 1990 .

[65]  Gregory J. Reid,et al.  Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solution space and calculating its Taylor series solution , 1991, European Journal of Applied Mathematics.

[66]  by Arch. Rat. Mech. Anal. , 2022 .

[67]  Willy Hereman,et al.  Review of Symbolic Software for the Computation of Lie Symmetries of Differential Equations , 1994 .

[68]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[69]  P. Olver Applications of lie groups to differential equations , 1986 .

[70]  Alexander Oron,et al.  Some symmetries of the nonlinear heat and wave equations , 1986 .

[71]  E. Hopf The partial differential equation ut + uux = μxx , 1950 .

[72]  Peter A. Clarkson,et al.  Applications of analytic and geometric methods to nonlinear differential equations , 1993 .

[73]  J. McLeod,et al.  The approach of solutions of nonlinear diffusion equations to travelling front solutions , 1977 .

[74]  M. C. Nucci Nonclassical Symmetries and Bäcklund Transformations , 1993 .

[75]  W. Miller,et al.  Group analysis of differential equations , 1982 .

[76]  P. Kersten Infinitesimal symmetries: a computional approach , 1987 .

[77]  M. Durevic Quantum field theory and local contextual extensions , 1992 .

[78]  G. Reid,et al.  A triangularization algorithm which determines the Lie symmetry algebra of any system of PDEs , 1990 .

[79]  Yu. I. Shokin,et al.  The Method of Differential Approximation , 1983 .

[80]  Howard A. Levine,et al.  The Role of Critical Exponents in Blowup Theorems , 1990, SIAM Rev..

[81]  S. Zidowitz Conditional Symmetries and the Direct Reduction of Partial Differential Equations , 1993 .

[82]  Peter J. Olver,et al.  Direct reduction and differential constraints , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[83]  W. I. Fushchich,et al.  Symmetries of Maxwell’s Equations , 1987 .

[84]  E. M. Vorob’ev Reduction and quotient equations for differential equations with symmetries , 1991 .

[85]  H. Stephani Differential Equations: Their Solution Using Symmetries , 1990 .

[86]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[87]  E. V. Pankrat'ev,et al.  Computations in differential and difference modules , 1989 .

[88]  Adrian H. Pincombe,et al.  Some similarity temperature profiles for the microwave heating of a half-space , 1992, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.