R-Syst::diatom: an open-access and curated barcode database for diatoms and freshwater monitoring

Diatoms are micro-algal indicators of freshwater pollution. Current standardized methodologies are based on microscopic determinations, which is time consuming and prone to identification uncertainties. The use of DNA-barcoding has been proposed as a way to avoid these flaws. Combining barcoding with next-generation sequencing enables collection of a large quantity of barcodes from natural samples. These barcodes are identified as certain diatom taxa by comparing the sequences to a reference barcoding library using algorithms. Proof of concept was recently demonstrated for synthetic and natural communities and underlined the importance of the quality of this reference library. We present an open-access and curated reference barcoding database for diatoms, called R-Syst::diatom, developed in the framework of R-Syst, the network of systematic supported by INRA (French National Institute for Agricultural Research), see http://www.rsyst.inra.fr/en. R-Syst::diatom links DNA-barcodes to their taxonomical identifications, and is dedicated to identify barcodes from natural samples. The data come from two sources, a culture collection of freshwater algae maintained in INRA in which new strains are regularly deposited and barcoded and from the NCBI (National Center for Biotechnology Information) nucleotide database. Two kinds of barcodes were chosen to support the database: 18S (18S ribosomal RNA) and rbcL (Ribulose-1,5-bisphosphate carboxylase/oxygenase), because of their efficiency. Data are curated using innovative (Declic) and classical bioinformatic tools (Blast, classical phylogenies) and up-to-date taxonomy (Catalogues and peer reviewed papers). Every 6 months R-Syst::diatom is updated. The database is available through the R-Syst microalgae website (http://www.rsyst.inra.fr/) and a platform dedicated to next-generation sequencing data analysis, virtual_BiodiversityL@b (https://galaxy-pgtp.pierroton.inra.fr/). We present here the content of the library regarding the number of barcodes and diatom taxa. In addition to these information, morphological features (e.g. biovolumes, chloroplasts…), life-forms (mobility, colony-type) or ecological features (taxa preferenda to pollution) are indicated in R-Syst::diatom. Database URL: http://www.rsyst.inra.fr/

[1]  L. Medlin,et al.  A Review of the Evolution of the Diatoms from the Origin of the Lineage to Their Populations , 2011 .

[2]  M. Barbour,et al.  Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton , 1999 .

[3]  D. Mann,et al.  Highly differentiated populations of the freshwater diatom Sellaphora capitata suggest limited dispersal and opportunities for allopatric speciation. , 2009, Protist.

[4]  F. De Filippis,et al.  A Selected Core Microbiome Drives the Early Stages of Three Popular Italian Cheese Manufactures , 2014, PloS one.

[5]  David G. Mann,et al.  Morphology and identity of some ecologically important small Nitzschia species , 2013 .

[6]  Jane Jamieson,et al.  Assessment of ecological status in UK rivers using diatoms , 2007 .

[7]  Peter E. Miller,et al.  INTER‐ AND INTRASPECIFIC VARIATION OF THE PSEUDO‐NITZSCHIA DELICATISSIMA COMPLEX (BACILLARIOPHYCEAE) ILLUSTRATED BY RRNA PROBES, MORPHOLOGICAL DATA AND PHYLOGENETIC ANALYSES 1 , 2006 .

[8]  S. Passy,et al.  Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters , 2007 .

[9]  F. Rimet,et al.  Next‐generation sequencing to inventory taxonomic diversity in eukaryotic communities: a test for freshwater diatoms , 2013, Molecular ecology resources.

[10]  Lénaïg Kermarrec Apport des outils de la biologie moléculaire pour l'utilisation des diatomées comme bioindicateurs de la qualité des écosystèmes aquatiques lotiques et pour l'étude de leur taxonomie , 2012 .

[11]  S. M. Edgar,et al.  PHYLOGENY OF AULACOSEIRA (BACILLARIOPHYTA) BASED ON MOLECULES AND MORPHOLOGY 1 , 2004 .

[12]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[13]  Alain Franc,et al.  Linking phylogenetic similarity and pollution sensitivity to develop ecological assessment methods: a test with river diatoms , 2016 .

[14]  Regine Jahn,et al.  Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols , 2011, Organisms Diversity & Evolution.

[15]  J. Seckbach,et al.  The diatom world , 2011 .

[16]  Alain Franc,et al.  When is sampling complete? The effects of geographical range and marker choice on perceived diversity in Nitzschia palea (Bacillariophyta). , 2014, Protist.

[17]  Linda K. Medlin,et al.  Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision , 2004 .

[18]  Stéphane Audic,et al.  The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy , 2012, Nucleic Acids Res..

[19]  J. Sinkeldam,et al.  A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands , 1994, Netherland Journal of Aquatic Ecology.

[20]  I. Kaczmarska,et al.  Barcoding diatoms: Is there a good marker? , 2009, Molecular ecology resources.

[21]  Koen Sabbe,et al.  A time-calibrated multi-gene phylogeny of the diatom genus Pinnularia. , 2011, Molecular phylogenetics and evolution.

[22]  Alain Franc,et al.  A Next-Generation Sequencing Approach to River Biomonitoring Using Benthic Diatoms , 2014, Freshwater Science.

[23]  Pieter Vanormelingen,et al.  An Inordinate Fondness? The Number, Distributions, and Origins of Diatom Species , 2013, The Journal of eukaryotic microbiology.

[24]  R. W. Butcher,et al.  Studies in the Ecology of Rivers: VII. The Algae of Organically Enriched Waters , 1947 .

[25]  C. Lovejoy,et al.  Distance and Character-Based Evaluation of the V4 Region of the 18S rRNA Gene for the Identification of Diatoms (Bacillariophyceae) , 2012, PloS one.

[26]  Robert J Olson,et al.  Molecular subdivision of the marine diatom Thalassiosira rotula in relation to geographic distribution, genome size, and physiology , 2012, BMC Evolutionary Biology.

[27]  Victor A Chepurnov,et al.  A MOLECULAR SYSTEMATIC APPROACH TO EXPLORE DIVERSITY WITHIN THE SELLAPHORA PUPULA SPECIES COMPLEX (BACILLARIOPHYTA) 1 , 2008, Journal of phycology.

[28]  Linda K. Medlin,et al.  Molecular assessment of phylogenetic relationships in selected species/genera in the naviculoid diatoms (Bacillariophyta). I. The genus Placoneis. , 2007 .

[29]  Frédéric Rimet,et al.  Life-forms, cell-sizes and ecological guilds of diatoms in European rivers , 2012 .

[30]  John P. Smol,et al.  The diatoms: applications for the environmental and earth sciences , 2012 .

[31]  Frédéric Rimet,et al.  Recent views on river pollution and diatoms , 2012, Hydrobiologia.

[32]  Regine Jahn,et al.  Taxonomic Reference Libraries for Environmental Barcoding: A Best Practice Example from Diatom Research , 2014, PloS one.

[33]  Lucien Hoffmann,et al.  A preliminary phylogenetic analysis of the Cymbellales based on 18S rDNA gene sequencing , 2011 .

[34]  Frédéric Rimet,et al.  Linking diatom sensitivity to herbicides to phylogeny: a step forward for biomonitoring? , 2014, Environmental science & technology.

[35]  M. Coste,et al.  “Omnidia”: software for taxonomy, calculation of diatom indices and inventories management , 1993, Hydrobiologia.

[36]  Andrew J. Alverson,et al.  INTRAGENOMIC NUCLEOTIDE POLYMORPHISM AMONG SMALL SUBUNIT (18S) RDNA PARALOGS IN THE DIATOM GENUS SKELETONEMA (BACILLARIOPHYTA) 1 , 2005 .

[37]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[38]  I. Kaczmarska,et al.  Survey of the Efficacy of a Short Fragment of the rbcL Gene as a Supplemental DNA Barcode for Diatoms , 2011, The Journal of eukaryotic microbiology.

[39]  David G. Mann,et al.  Characterizing the niches of two very similar Nitzschia species and implications for ecological assessment , 2015 .

[40]  Michael D. Guiry,et al.  AlgaeBase. World-wide electronic publication , 2013 .

[41]  Piet F. M. Verdonschot,et al.  Uncertainty in diatom assessment: Sampling, identification and counting variation , 2006 .

[42]  D. Mann,et al.  An assessment of potential diatom "barcode" genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). , 2007, Protist.

[43]  Frédéric Rimet,et al.  First evidence of the existence of semi-cryptic species and of a phylogeographic structure in the Gomphonema parvulum (Kützing) Kützing complex (Bacillariophyta). , 2013, Protist.

[44]  Helen Bennion,et al.  Recommendations for sampling littoral diatoms in lakes for ecological status assessments , 2006, Journal of Applied Phycology.

[45]  O. Gascuel,et al.  SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. , 2010, Molecular biology and evolution.

[46]  Linda K. Medlin,et al.  MORPHOLOGICAL AND MOLECULAR INVESTIGATIONS OF NAVICULOID DIATOMS. II. SELECTED GENERA AND FAMILIES , 2008 .

[47]  M. Coste,et al.  “Omnidia”: software for taxonomy, calculation of diatom indices and inventories management , 1993 .

[48]  Piet F. M. Verdonschot,et al.  Uncertainty in Diatom Assessment: Sampling, Identification and Counting Variation , 2006, Hydrobiologia.

[49]  Regine Jahn,et al.  Does the Cosmopolitan Diatom Gomphonema parvulum (Kützing) Kützing Have a Biogeography? , 2014, PloS one.

[50]  J. Stevenson,et al.  Ecological assessments with algae: a review and synthesis , 2014, Journal of phycology.

[51]  E. Theriot,et al.  PHYLOGENETIC SYSTEMATICS AS A GUIDE TO UNDERSTANDING FEATURES AND POTENTIAL MORPHOLOGICAL CHARACTERS OF THE CENTRIC DIATOM FAMILY THALASSIOSIRACEAE , 1994 .

[52]  K. T. Kiss,et al.  Phylogeny of six naviculoid diatoms based on 18S rDNA sequences. , 2001, International journal of systematic and evolutionary microbiology.

[53]  Friedrich Hustedt,et al.  Die Diatomeenflora Des Fluss-Systems Der Weser Im Gebiet Der Hansestadt Bremen , 1976 .

[54]  David G. Mann,et al.  The Sellaphora pupula species complex (Bacillariophyceae): morphometric analysis, ultrastructure and mating data provide evidence for five new species , 2004 .

[55]  Adriana Zingone,et al.  Global diversity and biogeography of Skeletonema species (bacillariophyta). , 2008, Protist.

[56]  David G. Mann,et al.  A proposed protocol for nomenclaturally effective DNA barcoding of microalgae , 2009 .

[57]  Linda K. Medlin,et al.  MORPHOLOGICAL AND MOLECULAR INVESTIGATIONS OF NAVICULOID DIATOMS. III. HIPPODONTA AND NAVICULA S. S. , 2008 .

[58]  S. Bates,et al.  CRYPTIC AND PSEUDO‐CRYPTIC DIVERSITY IN DIATOMS—WITH DESCRIPTIONS OF PSEUDO‐NITZSCHIA HASLEANA SP. NOV. AND P. FRYXELLIANA SP. NOV. 1 , 2012, Journal of phycology.

[59]  S. van Noort,et al.  Codivergence and multiple host species use by fig wasp populations of the Ficus pollination mutualism , 2012, BMC Evolutionary Biology.

[60]  Gernot Glöckner,et al.  Metabarcoding vs. morphological identification to assess diatom diversity in environmental studies , 2015, Molecular ecology resources.

[61]  D. Mann,et al.  Barcoding diatoms: exploring alternatives to COI-5P. , 2011, Protist.

[62]  Koen Sabbe,et al.  Morphological, genetic and mating diversity within the widespread bioindicator Nitzschia palea (Bacillariophyceae) , 2009 .

[63]  Paul J. Harrison,et al.  Effects of temperature and irradiance on growth of strains belonging to seven Skeletonema species isolated from Dokai Bay, southern Japan , 2011 .

[64]  Lucien Hoffmann,et al.  Molecular phylogeny of the family Bacillariaceae based on 18S rDNA sequences: focus on freshwater Nitzschia of the section Lanceolatae , 2011 .

[65]  Andrew J. Alverson,et al.  Bridging the Rubicon: phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. , 2007, Molecular phylogenetics and evolution.

[66]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[67]  Mehrdad Hajibabaei,et al.  Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next‐generation DNA sequencing , 2012, Molecular ecology.

[68]  Robert K Jansen,et al.  Dissecting signal and noise in diatom chloroplast protein encoding genes with phylogenetic information profiling. , 2015, Molecular phylogenetics and evolution.

[69]  Frédéric Rimet,et al.  Benthic diatom assemblages and their correspondence with ecoregional classifications: case study of rivers in north-eastern France , 2009, Hydrobiologia.

[70]  David G. Mann,et al.  Diatoms: Biology and Morphology of the Genera , 1990 .

[71]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[72]  B. Whitton,et al.  The Trophic Diatom Index: a new index for monitoring eutrophication in rivers , 1995, Journal of Applied Phycology.

[73]  Frédéric Rimet,et al.  Using diatom life-forms and ecological guilds to assess organic pollution and trophic level in rivers: a case study of rivers in south-eastern France , 2011, Hydrobiologia.

[74]  David G. Mann,et al.  The use of partial cox1, rbcL and LSU rDNA sequences for phylogenetics and species identification within the Nitzschia palea species complex (Bacillariophyceae) , 2010 .

[75]  M. Sogin,et al.  The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. , 1988, Gene.

[76]  N. Baeshen,et al.  Biological Identifications Through DNA Barcodes , 2012 .

[77]  R. Jewkes,et al.  Perceptions and Experiences of Research Participants on Gender-Based Violence Community Based Survey: Implications for Ethical Guidelines , 2012, PloS one.