Object-based MPEG-2 video indexing and retrieval in a collaborative environment

In this paper, an object-based video retrieval methodology for search in large, heterogeneous video collections is presented. The proposed approach employs a real-time, compressed-domain, unsupervised algorithm for the segmentation of image sequences to spatiotemporal objects. For the resulting objects, MPEG-7 compliant low-level descriptors describing their color, shape, position and motion characteristics are extracted. These are automatically associated using a fuzzy C-means algorithm with appropriate intermediate-level descriptors, which are part of a simple vocabulary termed object ontology. Combined with a relevance feedback mechanism, this scheme allows the qualitative definition of the high-level concepts the user queries for (semantic objects, each represented by a keyword) and relations between them, facilitating the retrieval of relevant video segments. Furthermore, it allows the collaborative construction of a knowledge base by accumulating the information contributed to the system during feedback by different users. Thus, it enables faster and more accurate retrieval of commonly requested keywords or semantic objects. Experimental results in the context of a collaborative environment demonstrate the efficiency of the proposed video indexing and retrieval scheme.

[1]  P. Kay Basic Color Terms: Their Universality and Evolution , 1969 .

[2]  Aleksandra Mojsilovic A method for color naming and description of color composition in images , 2002, Proceedings. International Conference on Image Processing.

[3]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[4]  Giorgos Stamou,et al.  Knowledge – Assisted Video Analysis and Object Detection , 2002 .

[5]  Philippe Martin,et al.  Knowledge Retrieval and the World Wide Web , 2000, IEEE Intell. Syst..

[6]  Thomas Sikora,et al.  The MPEG-7 visual standard for content description-an overview , 2001, IEEE Trans. Circuits Syst. Video Technol..

[7]  Michael G. Strintzis,et al.  An ontology approach to object-based image retrieval , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[8]  Giovanni Flammia What's Next for the E-Book? , 2000, IEEE Intell. Syst..

[9]  Michael G. Strintzis,et al.  Advanced content-based semantic scene analysis and information retrieval: the SCHEMA project , 2003 .

[10]  Arif Ghafoor,et al.  Semantic Modeling and Knowledge Representation in Multimedia Databases , 1999, IEEE Trans. Knowl. Data Eng..

[11]  Milind R. Naphade,et al.  A probabilistic framework for semantic video indexing, filtering, and retrieval , 2001, IEEE Trans. Multim..

[12]  P. Kay,et al.  Basic Color Terms: Their Universality and Evolution , 1973 .

[13]  Michael G. Strintzis,et al.  Real-time compressed-domain spatiotemporal segmentation and ontologies for video indexing and retrieval , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[14]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[15]  Noel E. O'Connor,et al.  Region and object segmentation algorithms in the Qimera segmentation platform , 2003 .

[16]  Bob J. Wielinga,et al.  Ontology-Based Photo Annotation , 2001, IEEE Intell. Syst..

[17]  Thomas S. Huang,et al.  Factor graph framework for semantic video indexing , 2002, IEEE Trans. Circuits Syst. Video Technol..

[18]  Balakrishnan Chandrasekaran,et al.  What are ontologies, and why do we need them? , 1999, IEEE Intell. Syst..

[19]  Michael G. Strintzis,et al.  REAL-TIME COMPRESSED-DOMAIN SPATIOTEMPORAL VIDEO SEGMENTATION , 2003 .

[20]  Peter D. Karp,et al.  A Collaborative Environment for Authoring Large Knowledge Bases , 1999, Journal of Intelligent Information Systems.

[21]  Nicu Sebe,et al.  Detecting automobiles and people for semantic video retrieval , 2002, Object recognition supported by user interaction for service robots.

[22]  J. Lammens A computational model of color perception and color naming , 1995 .

[23]  Milind R. Naphade,et al.  Extracting semantics from audio-visual content: the final frontier in multimedia retrieval , 2002, IEEE Trans. Neural Networks.

[24]  Shih-Fu Chang,et al.  VISMap: an interactive image/video retrieval system using visualization and concept maps , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[25]  James M. Keller,et al.  Fuzzy Models and Algorithms for Pattern Recognition and Image Processing , 1999 .

[26]  Atsuo Yoshitaka,et al.  A Survey on Content-Based Retrieval for Multimedia Databases , 1999, IEEE Trans. Knowl. Data Eng..

[27]  Juan Ruiz-Alzola,et al.  diSNei: A Collaborative Environment for Medical Images Analysis and Visualization , 2000, MICCAI.

[28]  Yueting Zhuang,et al.  Accommodating hybrid retrieval in a comprehensive video database management system , 2002, IEEE Trans. Multim..

[29]  Arif Ghafoor,et al.  Spatio-temporal modeling of video data for on-line object-oriented query processing , 1995, Proceedings of the International Conference on Multimedia Computing and Systems.

[30]  John R. Josephson,et al.  What Are They? Why Do We Need Them? , 1999 .

[31]  Milind R. Naphade,et al.  Novel scheme for fast and efficent video sequence matching using compact signatures , 1999, Electronic Imaging.

[32]  John Watkinson Mpeg 2 , 1999 .

[33]  David Doermann,et al.  Archiving, indexing, and retrieval of video in the compressed domain , 1996, Other Conferences.

[34]  Wei-Ying Ma,et al.  Learning similarity measure for natural image retrieval with relevance feedback , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[35]  Shih-Fu Chang,et al.  A fully automated content-based video search engine supporting spatiotemporal queries , 1998, IEEE Trans. Circuits Syst. Video Technol..

[36]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[37]  Nicu Sebe,et al.  Extended performance graphs for cluster retrieval , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[38]  Steffen Staab,et al.  KAON - Towards a Large Scale Semantic Web , 2002, EC-Web.

[39]  Moncef Gabbouj,et al.  MUVIS: a content-based multimedia indexing and retrieval framework , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[40]  Shih-Fu Chang,et al.  Overview of the MPEG-7 standard , 2001, IEEE Trans. Circuits Syst. Video Technol..

[41]  Jenq-Neng Hwang,et al.  Fast and automatic video object segmentation and tracking for content-based applications , 2002, IEEE Trans. Circuits Syst. Video Technol..