Implied Volatility Trees and Pricing Performance: Evidence from the S&P 100 Options

This paper examines the pricing performance of various discrete-time option models that accept the variation of implied volatilities with respect to the strike price and the time-to-maturity of the option (implied volatility tree models). To this end, data from the S&P 100 options are employed for the first time. The complex implied volatility trees are compared to the standard Cox–Ross–Rubinstein model and the ad-hoc traders model. Various criteria and interpolation methods are used to evaluate the performance of the models. The results have important implications for the pricing accuracy of the models under scrutiny and their implementation.

[1]  Nikolaos Panigirtzoglou,et al.  A new approach to modeling the dynamics of implied distributions: Theory and evidence from the S&P 500 options , 2004 .

[2]  Mark Britten-Jones,et al.  Option Prices, Implied Price Processes, and Stochastic Volatility , 2000 .

[3]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[4]  Les Clewlow,et al.  The Dynamics of the S&P 500 Implied Volatility Surface , 2000 .

[5]  P. Schönbucher A market model for stochastic implied volatility , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  Louis O. Scott Pricing Stock Options in a Jump‐Diffusion Model with Stochastic Volatility and Interest Rates: Applications of Fourier Inversion Methods , 1997 .

[7]  David S. Bates The Crash of ʼ87: Was It Expected? The Evidence from Options Markets , 1991 .

[8]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[9]  B. Dumas,et al.  Implied volatility functions: empirical tests , 1996, IEEE Conference on Computational Intelligence for Financial Engineering & Economics.

[10]  Tao Wu,et al.  Cross-sectional tests of deterministic volatility functions , 2002 .

[11]  David S. Bates Dollar jump fears, 1984–1992: distributional abnormalities implicit in currency futures options , 1996 .

[12]  Alessandro Rossi,et al.  The Britten-Jones And Neuberger Smile-Consistent With Stochastic Volatility Option Pricing Model: A Further Analysis , 2002 .

[13]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[14]  David S. Bates Testing Option Pricing Models , 1995 .

[15]  M. Rubinstein. Nonparametric tests of alternative option pricing models using all reported trades and quotes on the , 1985 .

[16]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[17]  David S. Bates Empirical option pricing: a retrospection , 2003 .

[18]  Jens Carsten Jackwerth,et al.  Option-Implied Risk-Neutral Distributions and Implied Binomial Trees , 1999 .

[19]  K. Lim,et al.  Pricing options using implied trees: Evidence from FTSE‐100 options , 2002 .

[20]  M. Rubinstein. Implied Binomial Trees , 1994 .

[21]  J. Jackwerth,et al.  The Price of a Smile: Hedging and Spanning in Option Markets , 2001 .

[22]  Jens Carsten Jackwerth,et al.  Generalized Binomial Trees , 1996 .

[23]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[24]  R. Whaley Derivatives on Market Volatility , 1993 .

[25]  J. Hull,et al.  A Methodology for Assessing Model Risk and its Application to the Implied Volatility Function Model , 2002, Journal of Financial and Quantitative Analysis.

[26]  Emanuel Derman,et al.  STOCHASTIC IMPLIED TREES: ARBITRAGE PRICING WITH STOCHASTIC TERM AND STRIKE STRUCTURE OF VOLATILITY , 1998 .

[27]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[28]  Marco Avellaneda,et al.  Calibrating Volatility Surfaces Via Relative-Entropy Minimization , 1996 .

[29]  G. Skiadopoulos VOLATILITY SMILE CONSISTENT OPTION MODELS: A SURVEY , 2001 .

[30]  A. Lo,et al.  Nonparametric Estimation of State‐Price Densities Implicit in Financial Asset Prices , 1998 .

[31]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[32]  R. Sundaram,et al.  Of Smiles and Smirks: A Term Structure Perspective , 1998, Journal of Financial and Quantitative Analysis.

[33]  Simulating the Evolution of the Implied Distribution , 2001 .

[34]  J. Hull Options, Futures, and Other Derivatives , 1989 .