Integration of Topological Constraints in Medical Image Segmentation

Topology is a strong global constraint that can be useful in generating geometrically accurate segmentations of anatomical structures. Conversely, topological “defects” or departures from the true topology of a structure due to segmentation errors can greatly reduce the utility of anatomical models. In this chapter we cover methods for integrating topological constraints into segmentation procedures in order to generate geometrically accurate and topologically correct models, which is critical for many clinical and research applications.

[1]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[2]  Pierre-Louis Bazin,et al.  Digital Homeomorphisms in Deformable Registration , 2007, IPMI.

[3]  Alan C. Evans,et al.  Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI , 2000, NeuroImage.

[4]  R. Kimmel,et al.  Cortex segmentation - a fast variational geometric approach , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[5]  Anders M. Dale,et al.  Improved Localization of Cortical Activity By Combining EEG and MEG with MRI Cortical Surface Reconstruction , 2002 .

[6]  A. Toga,et al.  Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. , 1997, Journal of computer assisted tomography.

[7]  Gilles Bertrand,et al.  A Boolean characterization of three-dimensional simple points , 1996, Pattern Recognition Letters.

[8]  Xiao Han,et al.  Statistical Study on Cortical Sulci of Human Brains , 2001, IPMI.

[9]  Xiao Han,et al.  Octree-Based Topology-Preserving Isosurface Simplification , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[10]  Christos Davatzikos,et al.  Hierarchical Matching of Cortical Features for Deformable Brain Image Registration , 1999, IPMI.

[11]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Hervé Delingette,et al.  General Object Reconstruction Based on Simplex Meshes , 1999, International Journal of Computer Vision.

[13]  Gilles Bertrand,et al.  A new characterization of three-dimensional simple points , 1994, Pattern Recognition Letters.

[14]  Richard M. Leahy,et al.  Automated graph-based analysis and correction of cortical volume topology , 2001, IEEE Transactions on Medical Imaging.

[15]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[16]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Anders M. Dale,et al.  Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex , 2001, IEEE Transactions on Medical Imaging.

[18]  Jerry L. Prince,et al.  Reconstruction of the human cerebral cortex from magnetic resonance images , 1999, IEEE Transactions on Medical Imaging.

[19]  Jerry L. Prince,et al.  Graph-Based Topology Correction for Brain Cortex Segmentation , 2001, IPMI.

[20]  R. Rabbitt,et al.  3D brain mapping using a deformable neuroanatomy. , 1994, Physics in medicine and biology.

[21]  W. Eric L. Grimson,et al.  Active Contours Under Topology Control Genus Preserving Level Sets , 2005, CVBIA.

[22]  Leif Kobbelt,et al.  Isosurface reconstruction with topology control , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[23]  Rainer Goebel,et al.  An Efficient Algorithm for Topologically Correct Segmentation of the Cortical Sheet in Anatomical MR Volumes , 2001, NeuroImage.

[24]  C. Davatzikos,et al.  Using a deformable surface model to obtain a shape representation of the cortex , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[25]  Xiao Han,et al.  Octree Grid Topology Preserving Geometric Deformable Model for Three-Dimensional Medical Image Segmentation , 2007, IPMI.

[26]  Christos Davatzikos,et al.  Topology Preservation and Regularity in Estimated Deformation Fields , 2003, IPMI.

[27]  Jean-Philippe Pons,et al.  Delaunay Deformable Models: Topology-Adaptive Meshes Based on the Restricted Delaunay Triangulation , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[29]  Jamshid Dehmeshki,et al.  Medical Image Segmentation Using Deformable Models and Local Fitting Binary , 2011 .

[30]  D. V. van Essen,et al.  Computerized Mappings of the Cerebral Cortex: A Multiresolution Flattening Method and a Surface-Based Coordinate System , 1996, Journal of Cognitive Neuroscience.

[31]  Florent Ségonne,et al.  Segmentation of medical images under topological constraints , 2005 .

[32]  Demetri Terzopoulos,et al.  T-snakes: Topology adaptive snakes , 2000, Medical Image Anal..

[33]  G. Fein,et al.  Tissue segmentation of the brain in Alzheimer disease. , 1997, AJNR. American journal of neuroradiology.

[34]  Dominique Hasboun,et al.  Multi-object Deformable Templates Dedicated to the Segmentation of Brain Deep Structures , 1998, MICCAI.

[35]  W. Eric L. Grimson,et al.  Topological Correction of Subcortical Segmentation , 2003, MICCAI.

[36]  D. V. van Essen,et al.  Structural and Functional Analyses of Human Cerebral Cortex Using a Surface-Based Atlas , 1997, The Journal of Neuroscience.

[37]  Isabelle Bloch,et al.  From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations , 1995, Journal of Mathematical Imaging and Vision.

[38]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[39]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[40]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[41]  Xiao Han,et al.  A 2D moving grid geometric deformable model , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[42]  W. Eric L. Grimson,et al.  A Genetic Algorithm for the Topology Correction of Cortical Surfaces , 2005, IPMI.

[43]  Robert T. Schultz,et al.  Segmentation and Measurement of the Cortex from 3D MR Images , 1998, MICCAI.

[44]  A. Dale,et al.  Thinning of the cerebral cortex in aging. , 2004, Cerebral cortex.

[45]  Pierre-Louis Bazin,et al.  Topology Preserving Tissue Classification with Fast Marching and Topology Templates , 2005, IPMI.

[46]  Zoë J. Wood,et al.  Topological Noise Removal , 2001, Graphics Interface.

[47]  Sylvain Jaume Topology simplification algorithm for the segmentation of medical scans / Algorithme de simplification topologique pour la segmentation d'images médicales volumétriques , 2004 .

[48]  Jacques-Olivier Lachaud,et al.  Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction , 1999, Medical Image Anal..

[49]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[50]  Jerry L Prince,et al.  Image Segmentation Using Deformable Models , 2000 .

[51]  A. Toga,et al.  Cortical variability and asymmetry in normal aging and Alzheimer's disease. , 1998, Cerebral cortex.

[52]  Johan Montagnat,et al.  Shape and Topology Constraints on Parametric Active Contours , 2001, Comput. Vis. Image Underst..

[53]  Pierre-Louis Bazin,et al.  Statistical and Topological Atlas Based Brain Image Segmentation , 2007, MICCAI.

[54]  Demetri Terzopoulos,et al.  Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion , 1988, Artif. Intell..

[55]  R. Kikinis,et al.  Temporal lobe sulco-gyral pattern anomalies in schizophrenia: an in vivo MR three-dimensional surface rendering study , 1994, Neuroscience Letters.

[56]  Bruce Fischl,et al.  Geometrically Accurate Topology-Correction of Cortical Surfaces Using Nonseparating Loops , 2007, IEEE Transactions on Medical Imaging.

[57]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[58]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .