Non-oberbeck-boussinesq effects in gaseous Rayleigh-Bénard convection.

Non-Oberbeck-Boussinesq (NOB) effects are measured experimentally and calculated theoretically for strongly turbulent Rayleigh-Bénard convection of ethane gas under pressure where the material properties strongly depend on the temperature. Relative to the Oberbeck-Boussinesq case we find a decrease of the central temperature as compared to the arithmetic mean of the top- and bottom-plate temperature and an increase of the Nusselt number. Both effects are of opposite sign and greater magnitude than those for NOB convection in liquids like water.

[1]  Eric Brown,et al.  Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection , 2005, Journal of Fluid Mechanics.

[2]  Libchaber,et al.  Non-Boussinesq effects in free thermal convection. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[3]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[4]  Leo P. Kadanoff,et al.  Turbulent heat flow: Structures and scaling , 2001 .

[5]  Non-Boussinesq effect: Thermal convection with broken symmetry , 1997 .

[6]  L. Talbot,et al.  The Theory of Laminar Boundary Layers in Compressible Fluids , 1964 .

[7]  Ciliberto,et al.  Large-scale flow properties of turbulent thermal convection. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  D. Lohse,et al.  Fluctuations in turbulent Rayleigh-Bénard convection: The role of plumes , 2004 .

[9]  R. Kraichnan Turbulent Thermal Convection at Arbitrary Prandtl Number , 1962 .

[10]  Jacques Chaussy,et al.  Observation of the Ultimate Regime in Rayleigh-Bénard Convection , 1997 .

[11]  G. Ahlers,et al.  Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh-Bénard convection. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  E. Spiegel Convection in Stars I. Basic Boussinesq Convection , 1971 .

[13]  Detlef Lohse,et al.  Scaling in thermal convection: a unifying theory , 2000, Journal of Fluid Mechanics.

[14]  J. Spurk Boundary Layer Theory , 2019, Fluid Mechanics.

[15]  J. C. Cooke THE THEORY OF LAMINAR, BOUNDARY LAYERS IN COMPRESSIBLE FLUIDS , 1964 .

[16]  D. Lohse,et al.  Thermal convection for large Prandtl numbers. , 2000, Physical review letters.

[17]  A. Oberbeck,et al.  Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen , 1879 .

[18]  D. Lohse,et al.  Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[20]  The search for slow transients, and the effect of imperfect vertical alignment, in turbulent Rayleigh–Bénard convection , 2005, Journal of Fluid Mechanics.

[21]  Eric Brown,et al.  Heat transport in turbulent Rayleigh-Bénard convection: Effect of finite top- and bottom-plate conductivities , 2005 .

[22]  Daniel G. Friend,et al.  Thermophysical Properties of Ethane , 1991 .

[23]  B. Castaing,et al.  Side wall effects in Rayleigh Bénard experiments , 2001 .