On the Connectivity of Visibility Graphs
暂无分享,去创建一个
David R. Wood | Pavel Valtr | Michael S. Payne | Attila Pór | P. Valtr | A. Pór | M. S. Payne | D. Wood
[1] Lutz Volkmann,et al. Degree sequence conditions for maximally edge-connected graphs depending on the clique number , 2000, Discret. Math..
[2] Lutz Volkmann. Degree sequence conditions for equal edge-connectivity and minimum degree, depending on the clique number , 2003, J. Graph Theory.
[3] J. Plesník,et al. On equality of edge-connectivity and minimum degree of a graph , 1989 .
[4] J. Matousek,et al. Using The Borsuk-Ulam Theorem , 2007 .
[5] L. A. Oa,et al. Crossing Numbers and Hard Erd} os Problems in Discrete Geometry , 1997 .
[6] Frank Harary,et al. Graph Theory , 2016 .
[7] David R. Wood,et al. On the Chromatic Number of the Visibility Graph of a Set of Points in the Plane , 2005, Discret. Comput. Geom..
[8] David R. Wood,et al. On Visibility and Blockers , 2009, J. Comput. Geom..
[9] Lutz Volkmann. Degree sequence conditions for equal edge-connectivity and minimum degree, depending on the clique number , 2003 .
[10] Jirí Matousek. Blocking Visibility for Points in General Position , 2009, Discret. Comput. Geom..
[11] László A. Székely,et al. Crossing Numbers and Hard Erdős Problems in Discrete Geometry , 1997, Combinatorics, Probability and Computing.
[12] Prosenjit Bose,et al. Every Large Point Set contains Many Collinear Points or an Empty Pentagon , 2009, CCCG.
[13] Florian Pfender. Visibility Graphs of Point Sets in the Plane , 2008, Discret. Comput. Geom..
[14] János Pach,et al. A note on blocking visibility between points , 2009 .
[15] D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .