Ultrasensitive Magnetoelectric Sensing System for Pico-Tesla MagnetoMyoGraphy

Magnetomyography (MMG) with superconducting quantum interference devices (SQUIDs) enabled the measurement of very weak magnetic fields (femto to pico Tesla) generated from the human skeletal muscles during contraction. However, SQUIDs are bulky, costly, and require working in a temperature-controlled environment, limiting wide-spread clinical use. We introduce a low-profile magnetoelectric (ME) sensor with analog frontend circuitry that has sensitivity to measure pico-Tesla MMG signals at room temperature. It comprises magnetostrictive and piezoelectric materials, FeCoSiB/AlN. Accurate device modelling and simulation are presented to predict device fabrication process comprehensively using the finite element method (FEM) in COMSOL Multiphysics. The fabricated ME chip with its readout circuit was characterized under a dynamic geomagnetic field cancellation technique. The ME sensor experiment validate a very linear response with high sensitivities of up to 378 V/T driven at a resonance frequency of fres = 7.76 kHz. Measurements show the sensor limit of detections of down to 175 pT/√Hz at resonance, which is in the range of MMG signals. Such a small-scale sensor has the potential to monitor chronic movement disorders and improve the end-user acceptance of human–machine interfaces.

[1]  M. Shamonin,et al.  DC magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures , 2016 .

[2]  B. Wagner,et al.  Highly sensitive MEMS magnetic field sensors with integrated powder-based permanent magnets , 2019, Sensors and Actuators A: Physical.

[3]  Seonho Seok,et al.  A study on wafer level vacuum packaging for MEMS devices , 2003 .

[4]  S. Nakayama,et al.  Real-time Measurement of Biomagnetic Vector Fields in Functional Syncytium Using Amorphous Metal , 2015, Scientific Reports.

[5]  G. Srinivasan,et al.  Theory of low-frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites , 2002 .

[6]  Ichiro Sasada,et al.  Magnetocardiogram measured by fundamental mode orthogonal fluxgate array , 2015 .

[7]  Eckhard Quandt,et al.  MEMS magnetic field sensor based on magnetoelectric composites , 2012 .

[8]  S. Dong,et al.  Giant magnetoelectric effect in Metglas/polyvinylidene-fluoride laminates , 2006 .

[9]  C. Nan,et al.  Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.

[10]  Eckhard Quandt,et al.  Magnetoelectric thin film composites with interdigital electrodes , 2013 .

[11]  Hadi Heidari,et al.  A CMOS Analog Front-End for Tunnelling Magnetoresistive Spintronic Sensing Systems , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[12]  Oswaldo Baffa,et al.  Magnetic fields from skeletal muscles: a valuable physiological measurement? , 2015, Front. Physiol..

[13]  D. Cohen,et al.  Magnetomyography: magnetic fields around the human body produced by skeletal muscles , 1972 .

[14]  Ru Zhang,et al.  Magnetic force driven magnetoelectric effect in bi-cantilever composites , 2017 .

[15]  Orphée Cugat,et al.  Magnetostrictive–piezoelectric composite structures for energy harvesting , 2011 .

[16]  Robert Jahns,et al.  Magnetoelectric sensors for biomagnetic measurements , 2011, 2011 IEEE International Symposium on Medical Measurements and Applications.

[17]  G. Fedder,et al.  Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons , 2005, IEEE Sensors Journal.

[18]  Markys G. Cain,et al.  Verified finite element simulation of multiferroic structures: Solutions for conducting and insulating systems , 2008 .

[19]  J. Wikswo,et al.  A model of the magnetic fields created by single motor unit compound action potentials in skeletal muscle , 1997, IEEE Transactions on Biomedical Engineering.

[20]  L. Daniel,et al.  Finite Element Modeling of Magnetoelectric Sensors , 2008, IEEE Transactions on Magnetics.

[21]  Shashank Priya,et al.  Tunable self-biased magnetoelectric response in homogenous laminates , 2012 .

[22]  Yao Wang,et al.  Enhanced Magnetic Field Sensitivity in Magnetoelectric Composite Based on Positive Magnetostrictive/Negative Magnetostrictive/Piezoelectric Laminate Heterostructure , 2017, IEEE Transactions on Magnetics.

[23]  Svenja Knappe,et al.  Optically Pumped Magnetometers for Magneto-Myography to Study the Innervation of the Hand , 2018, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[24]  X. Chen,et al.  Magnetoelectric characteristics of a dual-mode magnetostrictive/piezoelectric bilayered composite , 2008 .

[25]  Robert Plonsey,et al.  Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields , 1995 .

[26]  G. Srinivasan,et al.  Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites , 2003, cond-mat/0306513.

[27]  Alex I. Braginski,et al.  Biomagnetism using SQUIDs: status and perspectives , 2006 .

[28]  B. Wagner,et al.  MEMS magnetic field sensor based on magnetoelectric composites , 2012 .

[29]  Ricardo Ferreira,et al.  Spintronic Sensors , 2016, Proceedings of the IEEE.

[30]  X. Cui,et al.  Recent Advances in Neural Electrode-Tissue Interfaces. , 2017, Current opinion in biomedical engineering.

[31]  B. Wagner,et al.  Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites , 2010 .

[32]  C. Nan,et al.  Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and ferroelectric polymers , 2001 .

[33]  S. Dong,et al.  Equivalent circuit method for static and dynamic analysis of magnetoelectric laminated composites , 2008 .

[34]  B. Zhu,et al.  Magnetoelectric laminate composites: an overview of methods for improving the DC and low-frequency response , 2018, Journal of Physics D: Applied Physics.

[35]  M. Wuttig,et al.  Magnetoelectric magnetic field sensors , 2018, MRS Bulletin.

[36]  A. V. Carazo,et al.  Effect of the Magnetostrictive Layer on Magnetoelectric Properties in Lead Zirconate Titanate/Terfenol‐D Laminate Composites , 2001 .

[37]  Sergiu Groppa,et al.  Biomagnetic signals recorded during transcranial magnetic stimulation (TMS)-evoked peripheral muscular activity , 2019, Biomedizinische Technik. Biomedical engineering.

[38]  Roberto Merletti,et al.  Electromyography. Physiology, engineering and non invasive applications , 2005 .

[39]  P. T. Pappas,et al.  The original Ampère force and Biot-Savart and Lorentz forces , 1983 .

[40]  Matthew J. Brookes,et al.  A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers , 2017, NeuroImage.

[41]  Dario Farina,et al.  Miniaturized Magnetic Sensors for Implantable Magnetomyography , 2020, Advanced Materials Technologies.

[42]  Christine Kirchhof,et al.  Giant Magnetoelectric Effect in Thin‐Film Composites , 2012 .

[43]  Guole Wang,et al.  Strong flexural resonant magnetoelectric effect in Terfenol-D/epoxy-Pb(Zr,Ti)O-3 bilayer , 2005 .

[44]  Dwight D. Viehland,et al.  Demagnetizing factors for two parallel ferromagnetic plates and their applications to magnetoelectric laminated sensors , 2011 .

[45]  Martina Gerken,et al.  Two-Dimensional Versus Three-Dimensional Finite-Element Method Simulations of Cantilever Magnetoelectric Sensors , 2013, IEEE Transactions on Magnetics.

[46]  B. Zadov,et al.  Modeling of the magnetoelectric effect in finite-size three-layer laminates under closed-circuit conditions , 2010 .

[47]  Bernhard Wagner,et al.  Low temperature transient liquid phase bonding of Au/Sn and Cu/Sn electroplated material systems for MEMS wafer-level packaging , 2012, Microsystem Technologies.

[48]  S. Dong,et al.  Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr,Ti)O3 under resonant drive , 2003 .

[49]  S. Dong,et al.  Review of multi-layered magnetoelectric composite materials and devices applications , 2018 .

[50]  Faxin Li,et al.  An analytical nonlinear model for laminate multiferroic composites reproducing the DC magnetic bias dependent magnetoelectric properties , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[51]  L. Trahms,et al.  Magnetoencephalography with a chip-scale atomic magnetometer , 2012, Biomedical optics express.

[52]  Thierry Bal,et al.  Local recording of biological magnetic fields using Giant Magneto Resistance-based micro-probes , 2016, Scientific Reports.

[53]  Don Berlincourt,et al.  3 – Piezoelectric and Piezomagnetic Materials and Their Function in Transducers , 1964 .

[54]  D. Viehland,et al.  Magnetoelectricity in Composites , 2011 .

[55]  Hadi Heidari,et al.  CMOS Magnetic Sensors for Wearable Magnetomyography , 2018, 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[56]  Jens Reermann,et al.  Evaluation of magnetoelectric sensor systems for cardiological applications , 2018 .

[57]  Helmut Laufs,et al.  Magnetic Measurement of Electrically Evoked Muscle Responses With Optically Pumped Magnetometers , 2020, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[58]  Nian X. Sun,et al.  Highly Sensitive DC Magnetic Field Sensor Based on Nonlinear ME Effect , 2017, IEEE Sensors Letters.

[59]  S. Dong,et al.  Recent advancements in magnetoelectric particulate and laminate composites , 2007 .

[60]  M. Gerken,et al.  Magnetic Flux Concentration Effects in Cantilever Magnetoelectric Sensors , 2016, IEEE Transactions on Magnetics.

[61]  Phillip Durdaut,et al.  Noise Limits in Thin-Film Magnetoelectric Sensors With Magnetic Frequency Conversion , 2018, IEEE Sensors Journal.

[62]  S. Priya,et al.  Giant Magnetoelectric Effect in PZT Thin Film Deposited on Nickel , 2016 .

[63]  M. N. Ustinin,et al.  Reconstruction of the Human Hand Functional Structure Based On a Magnetomyogram , 2018 .

[64]  B. Zadov,et al.  Modeling of Small DC Magnetic Field Response in Trilayer Magnetoelectric Laminate Composites , 2012 .

[65]  G. Srinivasan,et al.  Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers , 2003, cond-mat/0307264.

[66]  Hadi Heidari,et al.  A CMOS Current-Mode Magnetic Hall Sensor With Integrated Front-End , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[67]  Hadi Heidari,et al.  Device Modeling of MgO-Barrier Tunneling Magnetoresistors for Hybrid Spintronic-CMOS , 2018, IEEE Electron Device Letters.

[68]  E. Quandt,et al.  Pushing the detection limit of thin film magnetoelectric heterostructures , 2017 .

[69]  S. Dong,et al.  Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature , 2006 .

[70]  Phillip Durdaut,et al.  Wide Band Low Noise Love Wave Magnetic Field Sensor System , 2018, Scientific Reports.

[71]  Jake J Abbott,et al.  Parametric design of tri-axial nested Helmholtz coils. , 2015, The Review of scientific instruments.

[72]  Ce-Wen Nan,et al.  Multiferroic magnetoelectric composite nanostructures , 2010 .

[73]  L. Trahms,et al.  Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers , 2015, Physics in medicine and biology.

[74]  Eckhard Quandt,et al.  Noise Performance of Magnetometers With Resonant Thin-Film Magnetoelectric Sensors , 2011, IEEE Transactions on Instrumentation and Measurement.

[75]  Guruprasad Madhavan,et al.  Electromyography: Physiology, Engineering and Non-Invasive Applications , 2005, Annals of Biomedical Engineering.

[76]  H. Meyer,et al.  Sub-fT/Hz1/2 resolution and field-stable SQUID magnetometer based on low parasitic capacitance sub-micrometer cross-type Josephson tunnel junctions , 2012 .

[77]  Supratik Datta,et al.  Modeling of a Galfenol transducer using the bidirectionally coupled magnetoelastic model , 2009 .