SommarioSi considerano corpi aventi leggi costitutive di tipo idealmente elasto-plastico, con leggi di scorrimento associate.Si adotta una descrizione del corpo con “elementi finiti”.Quando la struttura si stabilizza (shake-down) un elemento può essere deformato plasticamente in modo differente a seconda delle diverse sequenze di carico. Si mostra come sia possibile formulare un problema di programmazione matematica del tipo mini-max, tale che la sua soluzione dia un valore maggiorante delle possibili reali deformazioni plastichedi un elemento allo shake-down. E ciò sulla base soltanto dei dati meccanici e geometrici del corpo e suilimiti di variazione dei carichi.Si dimostra l'esistenza di soluzioni finite del problema posto, nell'ipotesi di dominio di plasticizzazione finito per ogni elemento. Si danno inoltre le condizioni per cui il problema si riduce a programmazione (non lineare) convessa, nel qual caso la ricerca di massimi locali, coincide con quella di massimi globali.SummaryBodies having ideally elastoplastic constitutive laws with associated flow laws are considered. Finite elements description is assumed.When the structure shakes-down, an element may be plastically strained in a different way according to the different load sequences. It is shown how it is possible to formulate a mathematical programming problem of the minimax type such that the solution yields an upperbound of the possible real plastic strainsof an element at shakedown. And this solely on the basis of the mechanical and geometric data of the body and the load variationlimits.It is shown that the problem set has finite solutions on the assumption of a finite yield range for every element. The conditions in which the problem is reduced to convex (nonlinear) programming are stated; in this case the search for local maxima coincides with that for global maxima.
[1]
Giulio Maier,et al.
Mathematical programming methods for the inelastic analysis of reinforced concrete frames allowing for limited rotation capacity
,
1972
.
[2]
O. C. Zienkiewicz,et al.
Elasto‐plastic solutions of engineering problems ‘initial stress’, finite element approach
,
1969
.
[3]
Aris Phillips,et al.
Plastic Analysis of Structures
,
1959
.
[4]
W. T. Koiter.
General theorems for elastic plastic solids
,
1960
.
[5]
P. D. Arthur,et al.
Ultimate strength design for structural concrete
,
1969
.
[6]
P. S. Symonds.
The Interpretation of Failure Loads in the Plastic Theory of Continuous Beams and Frames
,
1952
.
[7]
B. Neal.
Plastic Methods of Structural Analysis
,
1963
.
[8]
G. Maier,et al.
Mathematical programming methods for the inelastic analysis of reinforced concrete frames allowing for limited rotation capacity
,
1972
.
[9]
Giulio Maier,et al.
Shakedown theory in perfect elastoplasticity with associated and nonassociated flow-laws: A finite element, linear programming approach
,
1969
.
[10]
D. Koopman,et al.
On linear programming and plastic limit analysis
,
1965
.
[11]
On the incremental solution of elasto-plastic continua in the range of large displacements
,
1970
.
[12]
Giulio Maier,et al.
Incremental elastoplastic analysis and quadratic optimization
,
1970
.
[13]
G. Maier.
A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes
,
1970
.
[14]
Anthony V. Fiacco,et al.
Nonlinear programming;: Sequential unconstrained minimization techniques
,
1968
.