Musical genres: beating to the rhythms of different drums

Online music databases have increased significantly as a conse- quence of the rapid growth of the Internet and digital audio, requiring the de- velopment of faster and more efficient tools for music content analysis. Musical genres are widely used to organize music collections. In this paper, the problem of automatic single and multi-label music genre classification is addressed by ex- ploring rhythm-based features obtained from a respective complex network rep- resentation. A Markov model is built in order to analyse the temporal sequence of rhythmic notation events. Feature analysis is performed by using two multi- variate statistical approaches: principal components analysis (unsupervised) and linear discriminant analysis (supervised). Similarly, two classifiers are applied in order to identify the category of rhythms: parametric Bayesian classifier under the Gaussian hypothesis (supervised) and agglomerative hierarchical clustering (unsupervised). Qualitative results obtained by using the kappa coefficient and the obtained clusters corroborated the effectiveness of the proposed method.

[1]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[2]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[3]  Jennifer C. Lena,et al.  Classification as Culture: Types and Trajectories of Music Genres , 2008 .

[4]  Grigorios Tsoumakas,et al.  Multi-Label Classification of Music into Emotions , 2008, ISMIR.

[5]  Nedret Billor,et al.  Recognition of Western style musical genres using machine learning techniques , 2009, Expert Syst. Appl..

[6]  Tao Li,et al.  Machine Learning Approaches for Music Information Retrieval , 2009 .

[7]  Changshui Zhang,et al.  Content-Based Information Fusion for Semi-Supervised Music Genre Classification , 2008, IEEE Transactions on Multimedia.

[8]  Grigorios Tsoumakas,et al.  Multilabel Text Classification for Automated Tag Suggestion , 2008 .

[9]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[10]  Qin Yan,et al.  Tag-based Artist Similarity and Genre Classification , 2008, 2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop.

[11]  M. Akhtaruzzaman Representation of musical rhythm and its classification system based on mathematical and geometrical analysis , 2008, 2008 International Conference on Computer and Communication Engineering.

[12]  Alexander Lerch,et al.  A HIERARCHICAL APPROACH TO AUTOMATIC MUSICAL GENRE CLASSIFICATION , 2003 .

[13]  Eduardo Miranda,et al.  Composing Music with Computers , 2001 .

[14]  L. Fisher,et al.  391: A Monte Carlo Comparison of Six Clustering Procedures , 1975 .

[15]  Constantine Kotropoulos,et al.  Music Genre Classification: A Multilinear Approach , 2008, ISMIR.

[16]  Giorgio Zoia,et al.  On the Modeling of Time Information for Automatic Genre Recognition Systems in Audio Signals , 2005, ISMIR.

[17]  Meng Joo Er,et al.  Theory and Novel Applications of Machine Learning , 2009 .

[18]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[19]  E. Oja,et al.  Independent Component Analysis , 2013 .

[20]  Roger K. Blashfield,et al.  Mixture model tests of cluster analysis: Accuracy of four agglomerative hierarchical methods. , 1976 .

[21]  Shen Huang,et al.  Music Genre Classification Based on Multiple Classifier Fusion , 2008, 2008 Fourth International Conference on Natural Computation.

[22]  Petri Toiviainen,et al.  MIDI toolbox : MATLAB tools for music research , 2004 .

[23]  David G. Stork,et al.  Pattern Classification , 1973 .

[24]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[25]  N. Scaringella,et al.  Automatic genre classification of music content: a survey , 2006, IEEE Signal Process. Mag..

[26]  Simon Dixon,et al.  A Review of Automatic Rhythm Description Systems , 2005, Computer Music Journal.

[27]  Yannis Stylianou,et al.  A Statistical Approach to Musical Genre Classification using Non-Negative Matrix Factorization , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[28]  Jiebo Luo,et al.  Learning multi-label scene classification , 2004, Pattern Recognit..

[29]  François Pachet,et al.  A taxonomy of musical genres , 2000, RIAO.

[30]  C. W. Therrien,et al.  Decision, Estimation and Classification: An Introduction to Pattern Recognition and Related Topics , 1989 .

[31]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[32]  Luciano da Fontoura Costa,et al.  Shape Analysis and Classification: Theory and Practice , 2000 .

[33]  Manfred Schroeder,et al.  Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise , 1992 .

[34]  Grigorios Tsoumakas,et al.  Multi-Label Classification: An Overview , 2007, Int. J. Data Warehous. Min..

[35]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[36]  F. Holt Genre in Popular Music , 2007 .

[37]  Mohan S. Kankanhalli,et al.  Unsupervised classification of music genre using hidden Markov model , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[38]  Ioannis Karydis,et al.  Symbolic Music Genre Classification Based on Note Pitch and Duration , 2006, ADBIS.

[39]  J. Jośe A HIERARCHICAL APPROACH TO AUTOMATIC MUSICAL GENRE CLASSIFICATION , 2003 .

[40]  Gerhard Widmer,et al.  Evaluating Rhythmic descriptors for Musical Genre Classification , 2004 .

[41]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[42]  Taylor L. Booth,et al.  Sequential machines and automata theory , 1967 .

[43]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[44]  R. Mojena,et al.  Hierarchical Grouping Methods and Stopping Rules: An Evaluation , 1977, Comput. J..

[45]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[46]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[47]  J. A. Salvato John wiley & sons. , 1994, Environmental science & technology.

[48]  Zehra Cataltepe,et al.  Music Genre Classification Using MIDI and Audio Features , 2007, EURASIP J. Adv. Signal Process..

[49]  H. Charles Romesburg,et al.  Cluster analysis for researchers , 1984 .

[50]  François Pachet,et al.  Representing Musical Genre: A State of the Art , 2003 .

[51]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[52]  Alessandro Lameiras Koerich,et al.  Automatic music genre classification using ensemble of classifiers , 2007, 2007 IEEE International Conference on Systems, Man and Cybernetics.

[53]  B. C. Madden Fractals in Music: Introductory Mathematics for Musical Analysis , 1999 .

[54]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[55]  Grigorios Tsoumakas,et al.  Protein Classification with Multiple Algorithms , 2005, Panhellenic Conference on Informatics.