World Scientific

The Hilbert intersection point theorems the constructive theorems the Hilbert intersection point theorems in solid geometry a collection of theorems and proofs automatically generated by computers.

[1]  B. Sturmfels Computational Synthetic Geometry , 1989 .

[2]  John R. Anderson,et al.  The Geometry Tutor , 1985, IJCAI.

[3]  Larry Wos,et al.  Automated Reasoning: Introduction and Applications , 1984 .

[4]  A. Seidenberg A NEW DECISION METHOD FOR ELEMENTARY ALGEBRA , 1954 .

[5]  Sabine Stifter,et al.  Geometry theorem proving in vector spaces by means of Gröbner bases , 1993, ISSAC '93.

[6]  Howard Eves,et al.  A survey of geometry , 1963 .

[7]  W. Wu,et al.  A MECHANIZATION METHOD OF GEOMETRY AND ITS APPLICATIONS——II. CURVE PAIRS OF BERTRAND TYPE , 1987 .

[8]  Robert S. Boyer,et al.  Computational Logic , 1990, ESPRIT Basic Research Series.

[9]  Franz Winkler A Geometrical Decision Algorithm Based on the Gröbner Bases Algorithm , 1988, ISSAC.

[10]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[11]  H. Gelernter,et al.  Realization of a geometry theorem proving machine , 1995, IFIP Congress.

[12]  W. W. Bledsoe,et al.  Some Thoughts on Proof Discovery , 1986, SLP.

[13]  John R. Anderson,et al.  Tuning of Search of the Problem Space for Geometry Proofs , 1981, IJCAI.

[14]  W. Greub Linear Algebra , 1981 .

[15]  Sabine Stifter,et al.  Automated geometry theorem proving using Buchberger's algorithm , 1986, SYMSAC '86.

[16]  A. J. Nevins,et al.  Plane Geometry Theorem Proving Using Forward Chaining , 1975, Artif. Intell..

[17]  I. Goldstein Elementary Geometry Theorem Proving , 1973 .

[18]  S. Chou Mechanical Geometry Theorem Proving , 1987 .

[19]  Dennis S. Arnon,et al.  On the Mechanical Proof of Geometry Theorems Involving Inequalities , 1989 .

[20]  Xiao-Shan Gao,et al.  On the automatic derivation of a set of geometric formulae , 1995 .

[21]  Lu Yang,et al.  The Parallel Numerical Method of Mechanical Theorem Proving , 1990, Theor. Comput. Sci..

[22]  F. H. Thomas The Pythagorean Proposition. , 1976 .

[23]  Mark E. Stickel,et al.  A Hole in Goal Trees: Some Guidance from Resolution Theory , 1973, IEEE Transactions on Computers.

[24]  Shang-Ching Chou,et al.  Characteristic Sets and Gröbner Bases in Geometry Theorem Proving , 1989 .

[25]  Kristian J. Hammond,et al.  Representing and Using Procedural Knowledge to Build Geometry Proofs , 1993, AAAI.

[26]  Xiao Gao,et al.  A Collection of 120 Computer Solved Geometry Problems in Mechanical FormulaDerivation , 1989 .

[27]  Xiao-Shan Gao,et al.  Computations with parametric equations , 1991, ISSAC '91.

[28]  Maurice Mignotte,et al.  On Mechanical Quantifier Elimination for Elementary Algebra and Geometry , 1988, J. Symb. Comput..

[29]  Robert S. Boyer,et al.  A computational logic handbook , 1979, Perspectives in computing.

[30]  Xiao-Shan Gao,et al.  Implicitization of Rational Parametric Equations , 1992, J. Symb. Comput..

[31]  Xiao-Shan Gao An Introduction to Wu's Method of Mechanical Geometry Theorem Proving , 1992, IWAR.

[32]  Xiao-Shan Gao,et al.  On the normal parametrization of curves and surfaces , 1991, Int. J. Comput. Geom. Appl..

[33]  W Wu,et al.  A MECHANIZATION METHOD OF GEOMETRY AND ITS APPLICATIONS——I.DISTANCES,AREAS AND VOLUMES , 1986 .

[34]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[35]  吴文俊 ON THE CHEMICAL EQUILIBRIUM PROBLEM AND EQUATIONS-SOLVING , 1990 .

[36]  Wu Wen-tsun,et al.  Mechanical theorem proving of differential geometries and some of its applications in mechanics , 1991 .

[37]  Edsger W. Dijkstra,et al.  Selected Writings on Computing: A personal Perspective , 1982, Texts and Monographs in Computer Science.

[38]  Xiao-Shan Gao,et al.  Ritt-Wu's Decomposition Algorithm and Geometry Theorem Proving , 1990, CADE.

[39]  W. Bledsoe,et al.  Automated Theorem Proving: After 25 Years , 1984 .

[40]  K. Kusche,et al.  Implementation of a geometry theorem proving package in SCRATCHPAD II , 1987, EUROCAL.

[41]  J. Ritt,et al.  Differential Equations from the Algebraic Standpoint , 1933, Nature.

[42]  Dongming Wang,et al.  A new theorem discovered by computer prover , 1989 .

[43]  Donald W. Loveland,et al.  Automated theorem proving: a logical basis , 1978, Fundamental studies in computer science.

[44]  Wen-tsün Wu,et al.  TOWARD MECHANIZATION OF GEOMETRY — SOME COMMENTS ON HILBERT'S GRUNDLAGEN DER GEOMETRIE” , 1982 .

[45]  D. Loveland,et al.  Empirical explorations of the geometry-theorem proving machine , 1995 .

[46]  Bruno Buchberger,et al.  Applications of Gro¨bner bases in non-linear computational geometry , 1988 .

[47]  A. Seidenberg An elimination theory for differential algebra , 1959 .

[48]  D Wang,et al.  A MECHANICAL PROVING SYSTEM FOR CONSTRUCTIBLE THEOREMS IN ELEMENTARY GEOMETRY , 1987 .

[49]  Desmond Fearnley-Sander The Idea of a Diagram , 1989 .

[50]  Bruno Buchberger,et al.  Algebraic methods for geometric reasoning , 1988 .

[51]  B. Kutzler,et al.  On the Application of Buchberger's Algorithm to Automated Geometry Theorem Proving , 1986, J. Symb. Comput..

[52]  Deepak Kapur,et al.  A Refutational Approach to Geometry Theorem Proving , 1988, Artif. Intell..

[53]  Shang-Ching Chou GEO-Prover - A Geometry Theorem Prover Developed at UT , 1986, CADE.

[54]  E. L. The Foundations of Geometry , 1891, Nature.

[55]  Nathan b. Altshiller-Court Modern pure solid geometry , 1936 .

[56]  J Zhang,et al.  THE SUB-RESULTANT METHOD FOR AUTOMATED THEOREM PROVING , 1995 .

[57]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[58]  J. L. Coolidge,et al.  A Treatise On The Circle And Sphere , 1916 .

[59]  B. Kutzler,et al.  Careful algebraic translations of geometry theorems , 1989, ISSAC '89.

[60]  Sabine Stifter,et al.  A Geometry Theorem Prover Based on Buchberger's Algorithm , 1986, CADE.

[61]  Xiao-Shan Gao,et al.  Solving parametric algebraic systems , 1992, ISSAC '92.

[62]  Deepak Kapur,et al.  Using Gröbner Bases to Reason About Geometry Problems , 1986, J. Symb. Comput..

[63]  Michael J. Swain,et al.  Experiments in using a theorem prover to prove and develop geometrical theorems in computer vision , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[64]  D. Schramm,et al.  Cosmological large scale structure , 1993 .

[65]  Shang-Ching Chou,et al.  On Mechanical Theorem Proving in Minkowskian Plane Geometry , 1986, LICS.

[66]  Hoon Hong,et al.  Simple solution formula construction in cylindrical algebraic decomposition based quantifier elimination , 1992, ISSAC '92.

[67]  Joseph L. Mundy,et al.  Wu's Method and its Application to Perspective Viewing , 1988, Artif. Intell..

[68]  Deepak Kapur,et al.  Geometric reasoning , 1989 .

[69]  S. Chou,et al.  Mechanical Formula Derivation in Elementary Geometries , 1989 .

[70]  Hai-Ping Ko,et al.  Geometry Theorem Proving by Decomposition of Quasi-Algebraic Sets: An Application of the Ritt-Wu Principle , 1988, Artif. Intell..

[71]  Yang Lu Searching dependency between algebraic equations: an algorithm applied to automated reasoning , 1994 .

[72]  Ernst Snapper,et al.  Metric affine geometry , 1973 .

[73]  Thomas J. Kelanic Theorem-Proving With Euclid: Artifically Intelligent CAI In Extended BASIC. , 1978 .

[74]  M. Gardner Non-Euclidean Geometry , 1943 .

[75]  S. Ullman Model-Driven Geometry Theorem Prover , 1975 .

[76]  Martin Davis,et al.  The Prehistory and Early History of Automated Deduction , 1983 .

[77]  Shang-Ching Chou,et al.  Automated production of traditional proofs for constructive geometry theorems , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[78]  John R. Anderson,et al.  Abstract Planning and Perceptual Chunks: Elements of Expertise in Geometry , 1990, Cogn. Sci..

[79]  N. Altshiller-Court Modern Pure Solid Geometry , 1936, Nature.

[80]  Ben Noble,et al.  Using a computer for automatic proving of geometric theorems , 1986 .

[81]  Deepak Kapur,et al.  Geometry theorem proving using Hilbert's Nullstellensatz , 1986, SYMSAC '86.

[82]  Raymond Reiter,et al.  A Semantically Guided Deductive System for Automatic Theorem Proving , 1973, IEEE Transactions on Computers.

[83]  Zhang Jing A Criterion for Dependency of Algebraic Equations With Applications to Automated Theorem Proving , 1994 .

[84]  Wen-tsün Wu,et al.  A constructive theory of differential algebraic geometry based on works of J.F. Ritt with particular applications to mechanical theorem-proving of differential geometries , 1987 .

[85]  David Y. Y. Yun,et al.  An application of knowledge-base technology in education: a geometry theorem prover , 1986, SYMSAC '86.

[86]  Larry Wos,et al.  Problems and Experiments for and with Automated Theorem-Proving Programs , 1976, IEEE Transactions on Computers.

[87]  Shicong Hou,et al.  An Algorithm for Con-structing Gr?obner Bases from Characteristic Sets , 1990 .

[88]  H. F. Baker Principles of Geometry , 1934 .

[89]  J Hong CAN GEOMETRY THEOREM BE PROVED BY AN EXAMPLE , 1986 .

[90]  Basil Gordon,et al.  A simple non-Euclidean geometry and its physical basis , 1979 .

[91]  Gao Xiao-Shan TRANSFORMATION THEOREMS AMONG CAYLEY-KLEIN GEOMETRIES , 1992 .

[92]  T E Stokes On the algebraic and algorithmic properties of some generalised algebras , 1990 .

[93]  M Bulmer,et al.  Geometry Theorem Prover , 1995 .

[94]  Joseph A. Goguen,et al.  Modular Algebraic Specification of Some Basic Geometrical Constructions , 1988, Artif. Intell..

[95]  吴文俊 A MECHANIZATION METHOD OF GEOMETRY AND ITS APPLICATIONS IV.SOME THEOREMS IN PLANAR KINEMATICS , 1989 .

[96]  Dennis S. Arnon,et al.  Geometric Reasoning with Logic and Algebra , 1988, Artif. Intell..

[97]  Joseph R. Shoenfield,et al.  Mathematical logic , 1967 .