Block Reduced Lattice Bases and Successive Minima

A lattice basis b i ,…, b m is called block reduced with block size β if for every β consecutive vectors b i ,…, b i +β−1 , the orthogonal projections of b i ,…, b i +β−1 in span( b i ,…, b i −1 ) ⊥ are reduced in the sense of Hermite and Korkin–Zolotarev. Let λ i denote the successive minima of lattice L , and let b 1 ,…, b m be a basis of L that is block reduced with block size β. We prove that for i = 1,…, m where γ β is the Hermite constant for dimension β. For block size β = 3 and odd rank m ≥ 3, we show that where the maximum is taken over all block reduced bases of all lattices L . We present critical block reduced bases achieving this maximum. Using block reduced bases, we improve Babai's construction of a nearby lattice point. Given a block reduced basis with block size β of the lattice L , and given a point x in the span of L , a lattice point υ can be found in time β O(β) satisfying These results also give improvements on the method of solving integer programming problems via basis reduction.

[1]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[2]  László Babai,et al.  On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..

[3]  Claus-Peter Schnorr,et al.  Factoring Integers and Computing Discrete Logarithms via Diophantine Approximation , 1990, Advances In Computational Complexity Theory.

[4]  C. Hermite Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des nombres. (Continuation). , .

[5]  Jeffrey C. Lagarias,et al.  Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice , 1990, Comb..

[6]  Claus-Peter Schnorr,et al.  Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems , 1991, FCT.

[7]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[8]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[9]  László Lovász,et al.  Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.

[10]  A. Korkine,et al.  Sur les formes quadratiques positives quaternaires , 1872 .

[11]  Claus-Peter Schnorr,et al.  Geometry of Numbers and Integer Programming (Summary) , 1988, STACS.

[12]  C. P. Schnorr,et al.  A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms , 1987, Theor. Comput. Sci..

[13]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[14]  Ravi Kannan,et al.  Minkowski's Convex Body Theorem and Integer Programming , 1987, Math. Oper. Res..

[15]  Claus-Peter Schnorr,et al.  An Improved Low-Denisty Subset Sum Algorithm , 1991, EUROCRYPT.

[16]  C. Hermite Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des nombres. , 1850 .

[17]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..