Block Reduced Lattice Bases and Successive Minima
暂无分享,去创建一个
[1] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[2] László Babai,et al. On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..
[3] Claus-Peter Schnorr,et al. Factoring Integers and Computing Discrete Logarithms via Diophantine Approximation , 1990, Advances In Computational Complexity Theory.
[4] C. Hermite. Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des nombres. (Continuation). , .
[5] Jeffrey C. Lagarias,et al. Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice , 1990, Comb..
[6] Claus-Peter Schnorr,et al. Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems , 1991, FCT.
[7] C. A. Rogers,et al. An Introduction to the Geometry of Numbers , 1959 .
[8] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[9] László Lovász,et al. Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.
[10] A. Korkine,et al. Sur les formes quadratiques positives quaternaires , 1872 .
[11] Claus-Peter Schnorr,et al. Geometry of Numbers and Integer Programming (Summary) , 1988, STACS.
[12] C. P. Schnorr,et al. A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms , 1987, Theor. Comput. Sci..
[13] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[14] Ravi Kannan,et al. Minkowski's Convex Body Theorem and Integer Programming , 1987, Math. Oper. Res..
[15] Claus-Peter Schnorr,et al. An Improved Low-Denisty Subset Sum Algorithm , 1991, EUROCRYPT.
[16] C. Hermite. Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des nombres. , 1850 .
[17] Hendrik W. Lenstra,et al. Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..