A comparison between semi-supervised and supervised text mining techniques on detecting irony in greek political tweets

[1]  Reza Zafarani,et al.  Sarcasm Detection on Twitter: A Behavioral Modeling Approach , 2015, WSDM.

[2]  Bente Kalsnes,et al.  Social media as a political backchannel: Twitter use during televised election debates in Norway , 2014, Aslib J. Inf. Manag..

[3]  A. Arvidsson,et al.  Echo Chamber or Public Sphere? Predicting Political Orientation and Measuring Political Homophily in Twitter Using Big Data , 2014 .

[4]  Horacio Saggion,et al.  Modelling Irony in Twitter , 2014, EACL.

[5]  Igor Santos,et al.  Filtering Trolling Comments through Collective Classification , 2013, NSS.

[6]  Antal van den Bosch,et al.  The perfect solution for detecting sarcasm in tweets #not , 2013, WASSA@NAACL-HLT.

[7]  Paolo Rosso,et al.  A multidimensional approach for detecting irony in Twitter , 2013, Lang. Resour. Evaluation.

[8]  Katia Kermanidis,et al.  Political sentiment analysis of tweets before and after the Greek elections of May 2012 , 2013, Int. J. Soc. Netw. Min..

[9]  Igor Santos,et al.  Collective classification for unknown malware detection , 2011, Proceedings of the International Conference on Security and Cryptography.

[10]  Paolo Rosso,et al.  Mining Subjective Knowledge from Customer Reviews: A Specific Case of Irony Detection , 2011, WASSA@ACL.

[11]  Nina Wacholder,et al.  Identifying Sarcasm in Twitter: A Closer Look , 2011, ACL.

[12]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[13]  Ari Rappoport,et al.  Semi-Supervised Recognition of Sarcasm in Twitter and Amazon , 2010, CoNLL.

[14]  Ari Rappoport,et al.  ICWSM - A Great Catchy Name: Semi-Supervised Recognition of Sarcastic Sentences in Online Product Reviews , 2010, ICWSM.

[15]  Ewan Klein,et al.  Natural Language Processing with Python , 2009 .

[16]  Katja Markert,et al.  Subjectivity Recognition on Word Senses via Semi-supervised Mincuts , 2009, NAACL.

[17]  Lise Getoor,et al.  Collective Classification for Text Classification , 2009 .

[18]  Marc D. Pell,et al.  The sound of sarcasm , 2008, Speech Commun..

[19]  Carlo Strapparava,et al.  LEARNING TO LAUGH (AUTOMATICALLY): COMPUTATIONAL MODELS FOR HUMOR RECOGNITION , 2006, Comput. Intell..

[20]  Gökhan Tür,et al.  Combining active and semi-supervised learning for spoken language understanding , 2005, Speech Commun..

[21]  João Gama,et al.  Functional Trees , 2001, Machine Learning.

[22]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[23]  D. Tufis,et al.  BalkaNet : Aims , Methods , Results and Perspectives . A General Overview , 2004 .

[24]  Jennifer Neville,et al.  Collective Classification with Relational Dependency Networks , 2003 .

[25]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[26]  John G. Cleary,et al.  K*: An Instance-based Learner Using and Entropic Distance Measure , 1995, ICML.